

Installation, Operation & Maintenance Manual SmartPlate Domestic Hot Water Heaters

Single Wall and Double Wall Water Heater Models

SP23, SP33, SP45, SP69, SP150

Double Wall Heater Models: SPDW23, SPDW32, SPDW42, SPDW61, SPDW113

Initial Release: 07/14/2017

Technical Support 1-800-526-0288 (Mon-Fri, 8am-5pm EST) www.aerco.com

DISCLAIMER:

The information contained in this manual is subject to change without notice from AERCO International, Inc. AERCO makes no warranty of any kind with respect to this material, including, but not limited to, implied warranties of merchantability and fitness for a particular application. AERCO International is not liable for errors appearing in this manual, nor for incidental or consequential damages occurring in connection with the furnishing, performance, or use of these materials

OMM-0069_0G SP-100 AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 Phone: 800-526-0288 Page 1 of 134 07/14/2017

Cooke Industries - Phone: +64 9 579 2185 Email: sales@cookeindustries.co.nz Web: www.cookeindustries.co.nz

TABLE OF CONTENTS

CHAPTER 1. GENERAL INFORMATION	
1.1 INTRODUCTION	
1.2 ELECTRONIC CONTROL SYSTEM/SMARTPLATE (ECS/SP)	
1.2.1 Control Box Assembly	
1.2.2 Feed-Forward Temperature Sensors	
1.2.3 Outlet Temperature Sensors	
1.2.4 Boiler Water Inlet/Outlet Temperature Sensors	
1.3 SMARTPLATE PIPING ASSEMBLIES	
1.4 ELECTRONIC CONTROL VALVE, MXG-461	9
CHAPTER 2. INSTALLATION	
2.1 INTRODUCTION	
2.2 RECEIVING AND UNPACKING SMARTPLATE	
2.3 SITE SELECTION AND PREPARATION	
2.3.1 Installation Clearances	
2.3.2 Setting the Unit	
2.3.3 Repositioning ECS/SP Control Box	
2.4 HEATING FLUID AND DOMESTIC HOT WATER (DHW) PIPING	
2.5 SMARTPLATE ELECTRICAL WIRING CONNECTIONS	
2.6 ADDITIONAL COMPONENT INSTALLATION	21
CHAPTER 3. FUNCTIONAL DESCRIPTION	23
3.1 INTRODUCTION	
3.2 MECHANICAL OVERVIEW	
3.3 ELECTRONIC CONTROL OVERVIEW	
3.4 OVER-TEMPERATURE CONTROL AND SAFETY FEATURES	24
CHAPTER 4. ADJUSTMENT	27
4.1 INTRODUCTION	
4.2 SMARTPLATE 3-WAY CONTROL VALVE, MXG-461 ADJUSTMENT	27
4.2.1 Control Valve Calibration and Status Indications	
4.2.2 Manual Control of 3-Way Valve – Removable Handwheel to Hamper Tampering	30
4.2.3 Setpoint Temperature Adjustment	31
4.2.4 Over-Temperature Alarm Limit Adjustment	34
CHAPTER 5. OPERATION	37
5.1 INTRODUCTION	
5.2 PRE-OPERATIONAL CHECKS & PROCEDURES	37
5.3 INITIAL START-UP	38
5.4 CHECKING MIXED INLET TEMPERATURE	39
5.5 SHUTTING DOWN THE SYSTEM	39
CHAPTER 6. SCHEDULED MAINTENANCE	41
6.1 INTRODUCTION	
6.2 BOILER WATER DIFFERENTIAL PRESSURE GAUGE CHECK	42
6.3 PLATE PACK LEAKAGE CHECKS (DOUBLE-WALL MODELS ONLY)	43
6.4 OVER-TEMP SWITCH CHECK	
6.5 STRAINER INSPECTION AND CLEANING	44
6.6 CONTROL VALVE OPERATIONAL CHECK	44
6.7 TEMPERATURE SENSOR CHECKS	44

6.8 RECIRCULATION PUMP CHECK	45
6.9 PERIODIC CLEANING OF HEAT EXCHANGER	-
CHAPTER 7. TROUBLESHOOTING	
7.1 INTRODUCTION	
7.2 TROUBLESHOOTING PROCEDURES	
CHAPTER 8. CORRECTIVE MAINTENANCE	
8.1 INTRODUCTION	
8.2 SINGLE WALL HEAT EXCHANGER MAINTENANCE	
8.3 HEAT EXCHANGER CLEANING & DE-SCALING	-
8.4 SINGLE-WALL HEAT EXCHANGER REPLACEMENT	
8.5 DOUBLE-WALL HEAT EXCHANGER MAINTENANCE	
8.6 DOUBLE-WALL HEAT EXCHANGER CLEANING	
8.6.1 Heat Exchanger Cleaning and De-Scaling (In-Place Method)	
8.6.2 Heat Exchanger Cleaning By Disassembly	
8.7 DOUBLE-WALL HEAT EXCHANGER OPENING AND CLOSING	
8.7.1 OPENING HEAT EXCHANGER	67
8.7.2 REMOVAL AND INSERTION OF PLATES	69
8.7.3 CLOSING HEAT EXCHANGER	
8.8 DOUBLE-WALL HEAT EXCHANGER GASKET REPLACEMENT	73
8.8.1 Replacing Gaskets on Channel Plates	73
8.8.2 Replacing Gaskets on End Plate (First Plate Against Frame Plate)	74
8.9 DOUBLE-WALL HEAT EXCHANGER REPLACEMENT	
8.10 CONTROL VALVE ELECTRONIC MODULE REPLACEMENT AND VALVE REMOVAL	
8.10.1 Electronics Module Replacement	80
8.10.2 Control Valve Replacement	
8.11 RECIRCULATION PUMP REPLACEMENT	
8.12 STRAINERS	
8.13 ECS/SP CONTROL BOX ASSEMBLY AND COMPONENTS	
8.14 CONTROL BOX ASSEMBLY REPLACEMENT	
8.15 TEMPERATURE CONTROLLER REPLACEMENT	
8.16 OVER-TEMPERATURE SWITCH AND TEMPERATURE INDICATORS	
8.17 24 VAC STEP-DOWN TRANSFORMER REPLACEMENT	90
APPENDIX A	95
APPENDIX B – ECS/SP WIRING DIAGRAM & TERMINAL BLOCK CONNECTIONS	
APPENDIX C – SMART PLATE PIPING DRAWINGS	
APPENDIX D – DIMENSIONAL DRAWINGS	
APPENDIX E – PART LISTS	
APPENDIX F – RECOMMENDED SPARE PARTS	

(This Page Is Intentionally Blank)

CHAPTER 1. GENERAL INFORMATION

1.1 INTRODUCTION

This manual provides detailed coverage for the AERCO SmartPlate line of Water-to-Water Heaters. Each SmartPlate Water Heater model is equipped with AERCO's Electronic Control System (ECS), specifically designed for SmartPlate (ECS/SP), and an Electronic Control Valve, MXG-461. This Control System and Valve combination is used with all SmartPlate models and sizes.

The following SmartPlate Single-Wall and Double-Wall Heat Exchanger Water Heater models are available:

Туре	SmartPlate Models	Pressure Options *	Power Options**
		150 PSI	
Single Wall	SP23, SP33 SP45, SP69, SP150	200 PSI	120V 60 Hz
		150 PSI	220V 50 Hz 220V 60 Hz
Double Wall	SPDW23, SPDW32, SPDW42, SPDW61, SPDW113	200 PSI	2207 00 112

* Appropriate add-on kits differentiates overall product for given DHW side operating pressure.

** Internal power wiring and recirculation pump differentiates the power option.

Figure 1-1 shows a typical SmartPlate Water Heater with a single-wall heat exchanger. Piping assembly components are similar for double-wall models. The remaining sections in this chapter provide descriptions of the units, assemblies and sub-assemblies included with the SmartPlate models.

CHAPTER 1 – GENERAL INFORMATION

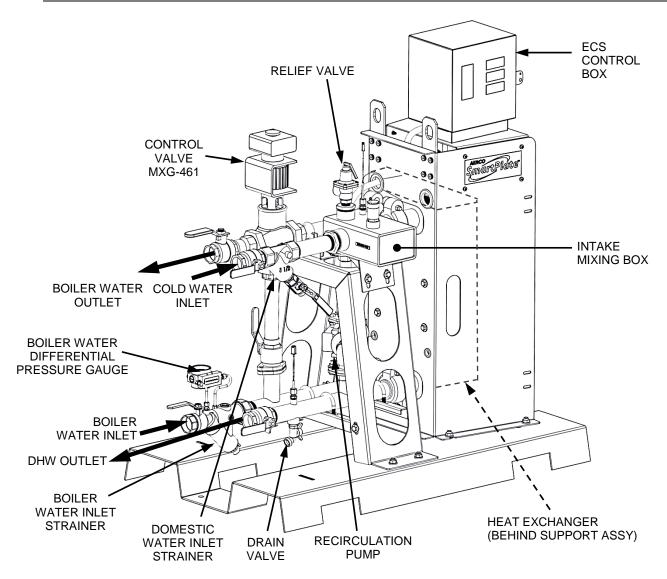


Figure 1-1. Typical SmartPlate Packaged Water Heater – Single Wall Shown

1.2 ELECTRONIC CONTROL SYSTEM/SMARTPLATE (ECS/SP)

Identical Electronic Control Systems are used on all SmartPlate models. This system, commonly referred to as the ECS/SP, contains a Control Box Assembly which includes all of the electronic circuitry for the ECS/SP. In addition, the ECS/SP includes several sensors and safety devices which provide temperature and flow control information to the Control Box circuitry. The Control Box and the additional devices included in the ECS are shown in Figure 1-2. The additional devices included in the ECS/SP include:

- Feed-Forward (Mixed Water) Temperature Sensor (Type J Thermocouple)
- DHW Outlet Dual Temperature Sensors (Type J Thermocouples)
- Boiler Water Inlet/Outlet Temperature Sensors (Type J Thermocouples)
- Over-Temperature Alarm (With Safety Shutdown)

If desired, the ECS/SP can be ordered with a Modbus communication option. This option permits the ECS/SP to be externally controlled by an Energy Management System (EMS), Building Automation System (BAS), or a computer supplied by other manufacturers.

The ECS/SP assemblies and components are described in the following subordinate sections.

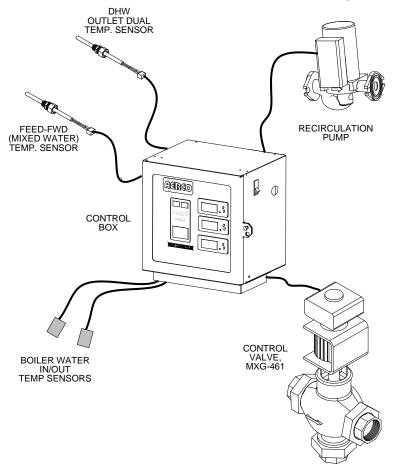


Figure 1-2. Electronic Control System/SmartPlate (ECS/SP)

1.2.1 CONTROL BOX ASSEMBLY

The front panel on the Control Box assembly contains all of the display devices for the ECS/SP. These include the Temperature Controller, an Over-Temperature Indicator/Switch and Boiler Water In/Out Temperature Indicators.

The Temperature Controller is the "brain" of the ECS/SP, which processes data received from the temperature sensors. Using feed forward and PID (Proportional Integral Derivative) algorithms, the Temperature Controller provides a 0 to 10 VDC control signal to the Control Valve Actuator, which precisely modulates the Control Valve for optimum DHW outlet temperature control. The upper display on the front panel of the Temperature Controller displays the current DHW outlet temperature. The lower display continuously displays the DHW setpoint temperature currently stored in the Temperature Controller.

The Over-Temperature indicator/switch included in the Control Box constantly monitors and displays the unit's outlet temperature to ensure it does not exceed the preset high temperature limit. The over-temperature limit is factory-set 20°F above the unit's setpoint temperature specified on the sales order. If an over-temperature condition occurs, this device sounds an

audible alarm and cuts off power to the Control Valve Actuator thereby closing the Control Valve and shutting off the boiler water flow to the unit.

The Boiler Water inlet and outlet temperatures are sensed on the surface of the inlet/outlet pipes and are provided for informational and troubleshooting purposes only. They are not used for temperature control but they do have alarm limits available for customer settings, if desired.

The Control Box components are housed in a steel enclosure with a hinged front door. This door contains a clear polycarbonate window which permits maintenance personnel to view the controls and displays of the Temperature Controller, and other display devices mounted on a recessed panel behind the door. All sensor and control signal connections are made via cable connections at the bottom of the Control Box. External AC power (120 VAC, 60 Hz, 220 VAC 50 Hz or 220V, 60 Hz) is supplied via the cutout on the bottom of the Control Box. If desired, the Control Box can be easily repositioned in 90° increments from its default position shown in Figure 1-1. Refer to Chapter 2, section 2.3.3 for details.

1.2.2 FEED-FORWARD TEMPERATURE SENSORS

The Feed-Forward Temperature Sensor (Type J thermocouple) is installed in the cold water inlet mixing box on the unit. The Temperature Sensor monitors a portion of the inlet flow to the unit and provides a feed-forward signal to the Temperature Controller which is proportional to the change in flow through the unit.

1.2.3 OUTLET TEMPERATURE SENSORS

The Control System includes a Dual Temperature Sensor which is installed in the hot water outlet of the unit. This sensor contains two identical Type J thermocouples. The first thermocouple connects directly to the Temperature Controller to provide feedback PID control for the outlet water temperature. The second thermocouple connects to the Over-Temperature Indicator/Switch in the Control Box.

1.2.4 BOILER WATER INLET/OUTLET TEMPERATURE SENSORS

Two additional Temperature Sensors (Type J thermocouples) are provided with the Control System. One Temperature Sensor is attached to the boiler water inlet and the other is attached to the boiler water outlet of the unit. These two Sensors are connected to two identical Temperature Display Indicators in the Control Box to provide real-time indications of the inlet and outlet boiler water temperatures. These Temperature Indicators are physically identical to the Over-Temperature Indicator/Switch, but are used as "Indicator-Only" devices and do not provide any switching functions. However, the Boiler Water Inlet Indicator will signal an alarm condition if the boiler water temperature exceeds 250°F.

CHAPTER 1 – GENERAL INFORMATION

1.3 SMARTPLATE PIPING ASSEMBLIES

The diameter of the piping assemblies furnished with the water heater will depend on the size of the heat exchanger installed in the SmartPlate model ordered. Smaller sized models utilize 1.5" piping assemblies, while the larger sizes utilize 2" piping assemblies. Refer to Table 1-1 below for the size of the piping assemblies used in each Single-Wall and Double-Wall SmartPlate model.

TABLE 1-1. SmartPlate Model Piping Assemblies		
Туре	SmartPlate Model	Piping Assembly Diameter
Single-Wall	SP23, SP33	1.5"
Single-Wall	SP45, SP69, SP150	2"
Double-Wall	(all SPDW23, SPDW32 1.5"	1.5"
Double-Wall	SPDW42, SPDW61, SPDW113	2"

In addition to the heat exchanger and piping components, each SmartPlate Piping Assembly contains a number of other important components and assemblies. The items include:

- Mixing box
- Recirculation Pump, (Continuously ON)
- Isolation & Drain Valves
- Strainers (Boiler Water & DHW Sides)
- Blow-down Valves
- Relief Valve
- Air Vent Valve

Figure 1-3 illustrates the locations of the above-mentioned items for a single-wall heat exchanger. Piping components are similar for double-wall models.

1.4 ELECTRONIC CONTROL VALVE, MXG-461

The 3-Way Electronic Control Valve (Siemens MXG-461) is powered by 24 VAC which is received from the ECS/SP Control Box. The Temperature Controller in the Control Box supplies a 0 - 10 VDC control signal to precisely modulate the 3-Way Valve to accurately control the temperature of the DHW output to the desired setpoint. The Control Valve is shown in Figure 1-4. The connection unions have flat face gaskets that provide the fluid seal.

CHAPTER 1 – GENERAL INFORMATION

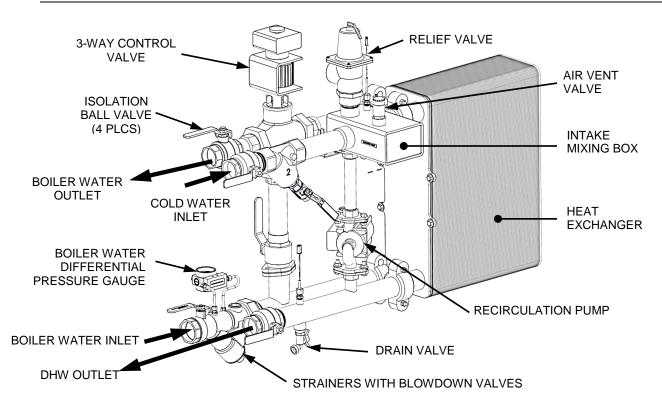


Figure 1-3. Typical SmartPlate Piping Assembly – 2" Piping Shown

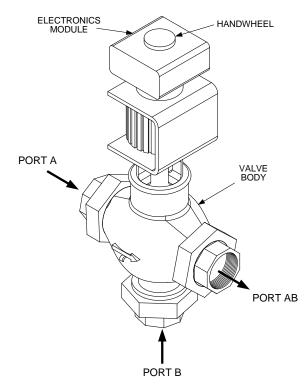


Figure 1-4. Electronic Control Valve

CHAPTER 2. INSTALLATION

2.1 INTRODUCTION

All of the SmartPlate Water Heater models are shipped fully assembled and ready for installation. Therefore, installation will consist of the following tasks:

- Unpack the SmartPlate Water Heater from its shipping container.
- Position and secure the unit at the site.
- Install the Relief Valve and Air Vent Valve on the mixing box.
- On units installed in New York City, install a second Relief Valve on the boiler water intake piping.
- Connect the hot boiler water piping to the unit.
- Connect the domestic hot water (DHW) piping to the unit.
- Connect external AC power to the ECS/SP Control Box.
- If required, connect Modbus control wiring to the Temperature Controller in the ECS/SP Control Box.

2.2 RECEIVING AND UNPACKING SMARTPLATE

Each SmartPlate Water Heater is shipped as a single crated unit. The packaged shipping weight will vary from 380 to approximately 1100 pounds depending on the model ordered. The unit must be moved with the proper equipment (forklift, pallet jack, etc.) to avoid possible injury to personnel or damage to the shipping container or unit. The shipping carton should be inspected for damage incurred during transit prior to signing the bill of lading.

NOTE:

AERCO is not responsible for lost or damaged freight. The freight carrier must be notified immediately of any damage detected.

Unpack the SmartPlate Water Heater from its shipping container taking care not to damage the unit when cutting away the packaging material.

Remove the package containing the Relief Valve and Air Vent Valves. This package may also contain an additional Relief Valve. See section 2.6 for a complete list of parts and installation instructions.

Remove the bolts securing the unit to its shipping skid. Perform a complete visual inspection of the unit to ensure there is no evidence of damage.

2.3 SITE SELECTION AND PREPARATION

Ensure that the site selected for installation of the SmartPlate Water Heater includes the following:

- Access to AC input power at 120 VAC/60 Hz, 220 VAC/50 Hz or 220 VAC 60 Hz, single phase.
- Close proximity to the boiler to be used as the heating fluid (hot water) source
- If applicable; access to Modbus Network wiring within the prescribed wire lengths (see section 2.5.

2.3.1 INSTALLATION CLEARANCES

The heater must be installed with the prescribed clearances for service as shown in Figure 2-1. the minimum clearance dimensions recommended by AERCO are listed below. However, if local building codes require additional clearances, these codes shall supersede AERCO's recommendations.

- Sides: 24 in. (61 cm)
- Front: 24 in. (61 cm)
- Rear: 24 in. (61 cm)
- Top: 12 in. (30.5 cm)

All water piping and electrical conduit must be arranged so that it does not interfere with the removal of any Water Heater assemblies/parts or inhibit service or maintenance of the unit.

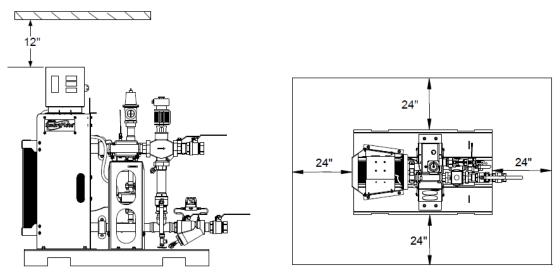


Figure 2-1. SmartPlate Water Heater Clearances

CAUTION!

While packaged in the shipping container, the heater must be move using a forklift or pallet jack. After unpacking, the heater should be lifted and moved using the lifting tabs (single-wall model), or frame cutouts (double-wall model) provided on the heater. Alternately, a forklift or pallet jack may be used to move the unit by inserting the tines through the cutouts in the heater base (Figure 2-1). Refer to the information in the following section.

2.3.2 SETTING THE UNIT

SmartPlate Single-Wall models contain two lifting tabs at the top of the frame assembly (Figure 2-2 a). Use these tabs to lift and move the unit. Double-Wall models contain two round cutouts on the frame plate and two on the pressure plate of the heat exchanger (Figure 2-2 b). To lift and move the unit, use these cutouts, or wrap the lifting strap around the threaded bolts protruding from the heat exchanger (Figure 2-2 b).

In multiple unit installations, it is important to plan the position of each unit in advance. Sufficient space for piping connections and future service/maintenance requirements must also be taken into consideration. All piping must include ample provisions for expansion.

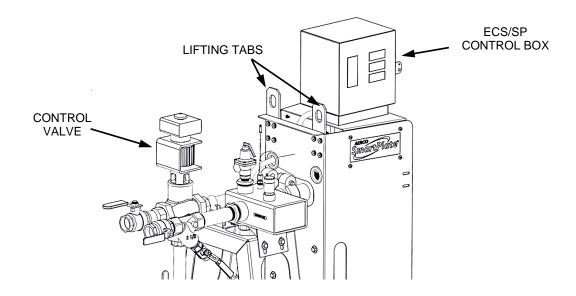


Figure 2-2 a. SmartPlate Lifting Provisions – Single-Wall Models

CAUTION!

For Single-Wall models, DO NOT attempt to reposition the ECS/SP Control Box with the panel displays facing the unit's Piping Assembly, as the location of the lifting tabs will prevent the Control Box door from opening fully (Figure 2-2 a).

CHAPTER 2 – INSTALLATION

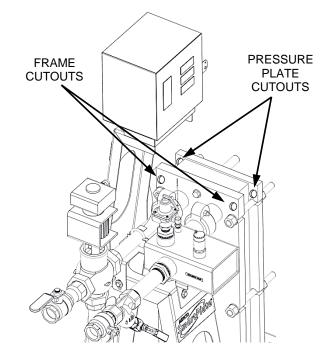
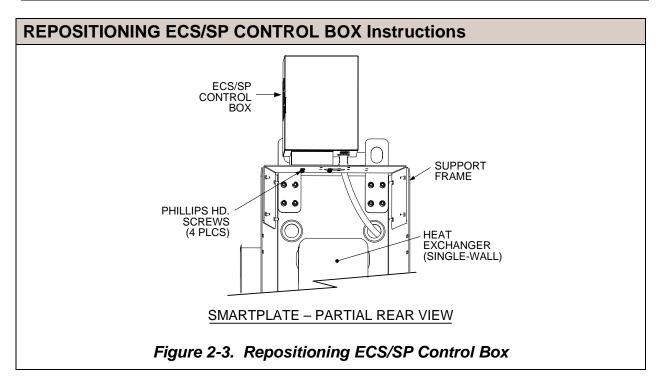


Figure 2-2 b. SmartPlate Lifting Provisions – Double-Wall Models

2.3.3 REPOSITIONING ECS/SP CONTROL BOX


If required, the front panel displays of the ECS/SP Control Box can be repositioned from the default left-side of the unit (Figure 2-2) to either the right side or rear of the unit to optimize viewing of the panel displays. Repositioning of the Control Box is accomplished as follows:

REPOSITIONING ECS/SP CONTROL BOX Instructions

- 1. Power the unit off.
- 2. Disconnect external cables at their respective connections (Molex).
- 3. From the rear of the unit (Figure 2-3, below), remove the four Phillips head screws securing the base of the Control Box to the unit's frame assembly.
- 4. Position the Control Box to the desired orientation to provide easy viewing of the control panel displays.
- 5. Ensure that all power and control wiring are of sufficient length to prevent undue stress on the wiring connections. Reposition wiring harnesses as necessary.
- 6. Replace the four Phillips head screws removed in step 1.
- 7. Apply power if previously connected.
- 8. This completes the repositioning of the ECS/SP Control Box.

CHAPTER 2 – INSTALLATION

2.4 HEATING FLUID AND DOMESTIC HOT WATER (DHW) PIPING

The diameter of the heating fluid (hot boiler water) and DHW piping will depend on the model number and size of the unit being installed. Refer to Table 2-1 for applicable piping sizes.

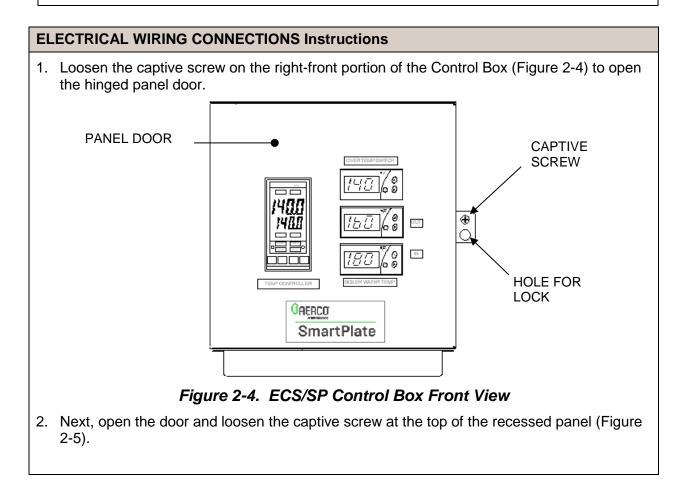
TABLE 2-1.	ABLE 2-1. Pipe Sizing Chart	
Туре	SmartPlate Water Heater Model	Pipe Diameter
Single-Wall	SP23, SP33	1.5 inches
Single-wai	SP45, SP69, SP150	2.0 inches
Double-Wall	SPDW23, SPDW32	1.5 inches
Double-wall	SPDW42, SPDW61, SPDW113	2.0 inches

CAUTION!

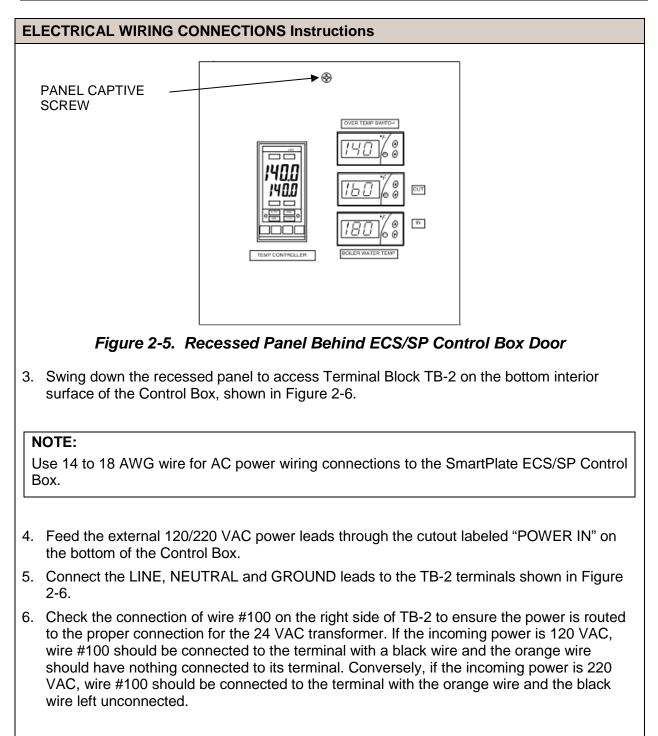
Two pipe wrenches MUST be used when installing boiler water and DHW piping unions to prevent pipe rotation and avoid leaks.

The locations and spacing for the heating fluid (hot boiler water) and DHW piping are provided in Dimensional Drawings AP-A-846 (Single-Wall) and AP-A-847 (Double-Wall), included in Appendix D of this document. In addition, sample piping diagrams are provided in Appendix C for single and multiple unit installations.

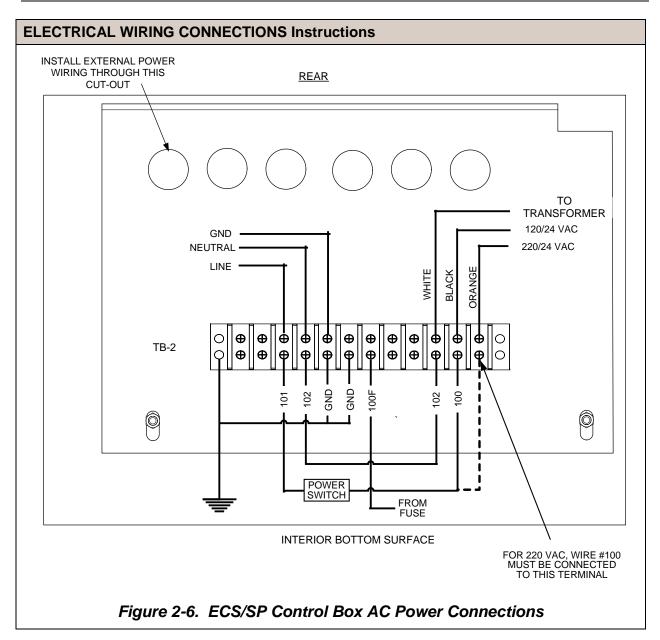
IMPORTANT!

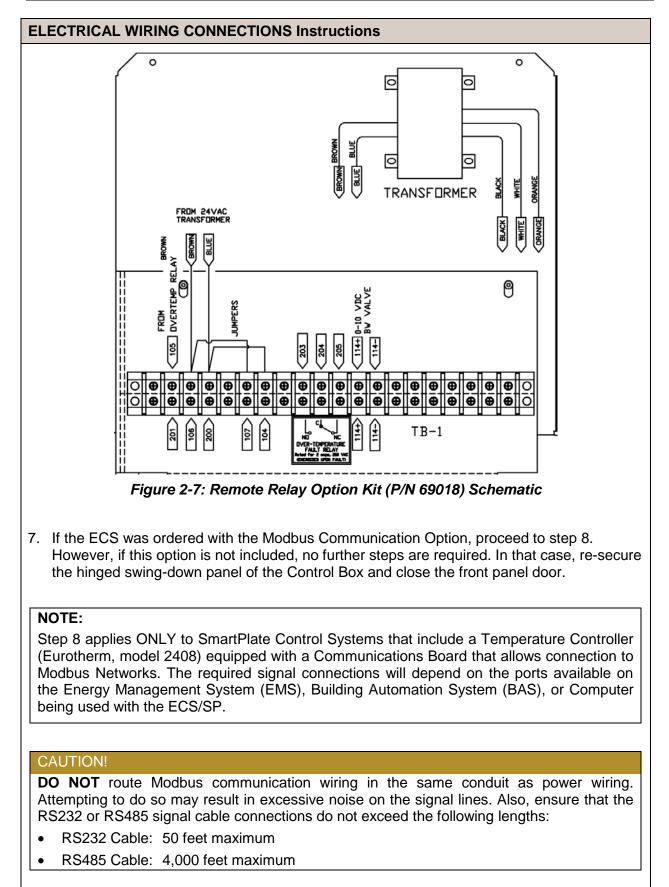

When SmartPlate Water Heaters are shipped from the factory, all four isolation ball valves and the drain valve (Figure 1-3) are opened. Close all valves during installation. Do not open the valves until instructed to do so in Chapter 5 of this manual.

2.5 SMARTPLATE ELECTRICAL WIRING CONNECTIONS


The SmartPlate ECS/SP Control Box and all other ECS/SP components are installed on the unit prior to shipment from the factory. Therefore, electrical connections to the ECS/SP basically consist of connecting external AC power to the ECS/SP Control Box. The system can be powered by a single-phase AC voltage of 120 VAC, 60 Hz, 220 VAC, 50 Hz or 220 VAC 60 Hz. However, if the ECS/SP was ordered with the Modbus Communication option, several additional signal lead connections will need to be made inside the Control Box. These signal leads will permit the ECS/SP to be controlled by an external Energy Management System (EMS), Building Automation System (BAS), or Computer. Proceed as follows:

NOTE:


Following installation, a lock (Not Supplied) can be installed on the front door of the Control Box, if desired, to prevent unauthorized access to ECS settings.



CHAPTER 2 – INSTALLATION

 OMM-0069_0G
 AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913
 Page 19 of 134

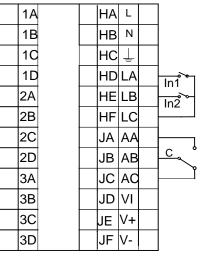
 SP-100
 Phone: 800-526-0288
 07/14/2017

 Cooke Industries - Phone: +64 9 579 2185
 Email: sales@cookeindustries.co.nz
 Web: www.cookeindustries.co.nz

ELECTRICAL WIRING CONNECTIONS Instructions

8. To permit Modbus control of the ECS/SP, refer to Table 2-2, below, and connect the appropriate wire leads to the Temperature Controller terminals listed. Refer to the Temperature Controller (Eurotherm 2408) pinouts shown in Figure 2-8 to locate the required terminals. Also, refer to Appendix A for instructions on how to change the Temperature Controller Modbus address and for a listing of active Modbus data addresses for the 2408 Controller. In addition, the Eurotherm documents referenced in this Appendix provide additional communication information related to Modbus.

NOTE:


The complete wiring diagram for the SmartPlate Electronic Control System is provided in Appendix B of this Instruction Manual. In addition, the wiring connections for Control Box Terminal Blocks TB-1 and TB-2 are also provided for reference purposes.

NOTE:

AERCO recommends that shielded, twisted-pair cable be used for communication wiring. Examples of suitable wiring are: Belden 9841, 8761, 3105A, or equivalent.

TABLE 2-2. M	odbus Com	munication Signa	al Connections		
			COMPUTER COM	NTROL CABLE	
2408 TEMP. CO	NIROLLER		RS232/9-PIN	RS232/25-PIN	RS485
SIGNAL NAME	PIN NO.	SIGNAL NAME	PIN NO.	PIN NO.	PIN NO.
GROUND	HD	GROUND	5	7	GROUND
RECEIVE	HE	TRANSMIT	3	2	A(-)
TRANSMIT	HF	RECEIVE	2	3	B(+)

2408 CONTROLLER

SEE TABLE 2-2 FOR COMM CONNECTIONS

Figure 2-8. Temperature Controller (Eurotherm 2408) Terminal Connection Diagram

2.6 ADDITIONAL COMPONENT INSTALLATION

A number of SmartPlate Water Heater components are included in an installation kit. These parts must be installed after the unit is setup at the site.

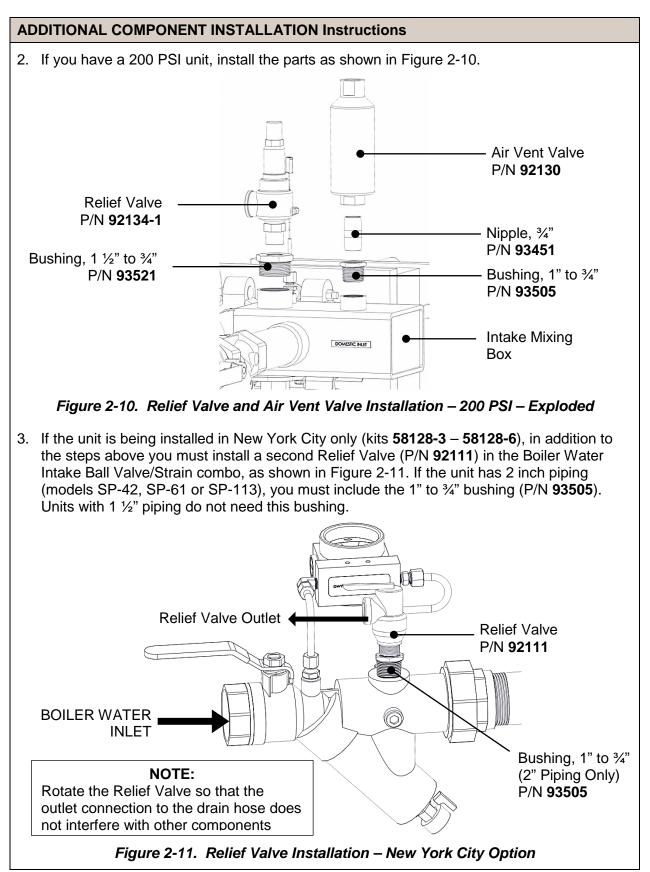
There are six installation kits. The parts in each kit depend on the SmartPlate model, the pressure option, and whether it is being installed in New York City.

Kit #	Applies to SmartPlate Models	Pressure	NYC Option
58128-1	SP23, SP33, SP45, SP69, SP150 SPDW23, SPDW32, SPDW42, SPDW61, SPDW113	150 PSI	No
58128-2	SP23, SP33, SP45, SP69, SP150 SPDW23, SPDW32, SPDW42, SPDW61, SPDW113	200 PSI	INO
58128-3	SP23, SP33, SPDW23, SPDW32	150 PSI	
58128-4	SP45, SP69, SP150, SPDW42, SPDW61, SPDW113	150 FSI	Yes
58128-5	SP23, SP33, SPDW23, SPDW32	200 PSI	162
58128-6	SP45, SP69, SP150, SPDW42, SPDW61, SPDW113	200 F31	

The contents of the kits are shown below (see Appendix E for a full list and quantity per kit)

Part #	Description
92070	Air Vent Valve 1" 150 PSI
92130	Air Vent Valve ¾", 200 PSI
92065-1	Relief Valve, ¾M X ¾F, 150 PSI
92134-1	Relief Valve, 200 PSI
92111	Relief Valve
93521	Reducing Bushing, 1 ¹ / ₂ " to ³ / ₄ "
93505	Reducing Bushing 1" to ³ / ₄ "
93451	Nipple, ¾", 2" Lg.

Complete the instructions below to install Relief Valve and Air Vent valves.


ADDITIONAL COMPONENT INSTALLATION Instructions 1. If you have a 150 PSI unit, install the parts as shown in Figure 2-9. Relief Valve P/N 92065-1 in 1 ¹/₂" to ³/₄" Bushing Air Vent Valve P/N 93521 P/N 92070 Intake Mixing DOMESTIC INLET Box TI Figure 2-9. Relief Valve and Air Vent Valve Installation – 150 PSI – Exploded

OMM-0069_0G AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 Page 21 of 134 SP-100 Phone: 800-526-0288 07/14/2017

Cooke Industries - Phone: +64 9 579 2185 Email: sales@cookeindustries.co.nz Web: www.cookeindustries.co.nz

CHAPTER 2 – INSTALLATION

CHAPTER 3. FUNCTIONAL DESCRIPTION

3.1 INTRODUCTION

SmartPlate Water Heaters are equipped with a stainless steel plate heat exchanger, an ECS/SP Electronic Control System, and an MXG-461 Control Valve. This design results in a highly responsive system which provides virtually constant hot water flow at the selected setpoint temperature.

Accessories included with SmartPlate Water Heaters include:

- Boiler water and domestic water Y-strainers with blow-down valves
- Relief Valve
- Air Vent Valve
- Isolation valves and domestic water drain valve
- Boiler water differential pressure gauge
- Domestic water air vent
- Integral domestic water circulator pump

A simplified functional block diagram for the SmartPlate Water Heater is shown in Figure 3-1. The following sections provide a top-level functional overview of system operation.

3.2 MECHANICAL OVERVIEW

The cold water enters heat exchanger through the inlet connection, strainer, and mixing box. Cold water flows through the plate heat exchanger, where it is heated by hot boiler water, and then discharged through the Domestic Hot Water (DHW) outlet connection. A portion of hot water is pumped into the mixing box where it is mixed with the cold water entering the heater, thereby providing a load sensing feed forward function.

Boiler water supplied to the heat exchanger passes through the inlet connection and strainer. The boiler water heats the colder domestic water, and is then discharged through the boiler water outlet connection. The boiler water flow is controlled by the 3-way MXG-461 Control Valve which is located in the outlet path of the boiler water piping connection. If desired, the Control Valve configuration can be changed to a 2-Way Valve by closing the Ball Valve located between the boiler water inlet connection and port B of the Valve (see Figure 3-1). However if this 2-Way configuration is used, ensure that a by-pass line is installed in the boiler water piping (outside the unit) to avoid dead-heading the boiler water pump.

For SmartPlate models with Double-Wall heat exchangers, heat transfer plates are positioned together to form one assembly with an air space between them. This protects against leakage of boiler water into the domestic water. If one of the plates should develop a leak (boiler water or domestic water, whichever is leaking), the water will enter the air space and exit to the atmosphere. It will flow out through leak detection channels alerting an operator that a leak has occurred.

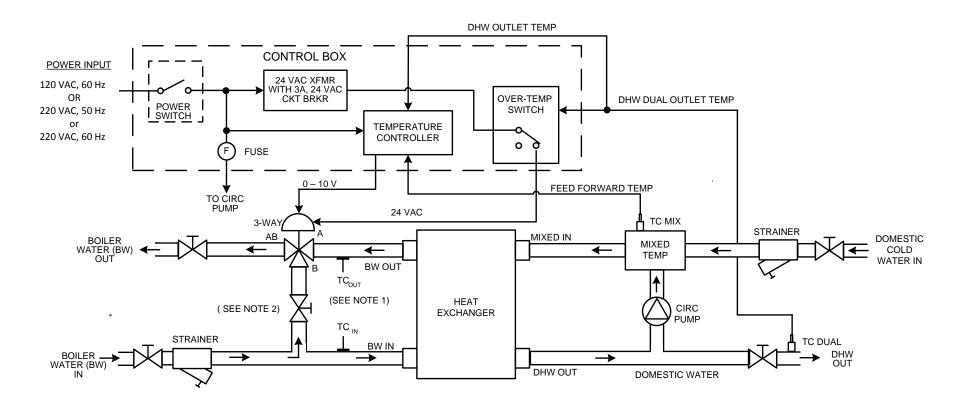
CHAPTER 3 – FUNCTIONAL DESCRIPTION

3.3 ELECTRONIC CONTROL OVERVIEW

The primary control mechanism for the ECS/SP is an Electronic Process Controller which is installed in the Control Box. The Controller utilizes feed forward and PID (Proportional Integral Derivative) algorithms to provide precise control of the unit's outlet temperature. Outlet temperature control is accomplished by modulating the open/closed position of the MXG-461 Control Valve Actuator.

The Controller continuously monitors the unit's outlet temperature via a thermocouple located in the outlet port. The Controller also receives a feed-forward signal from the temperature sensor mounted in the mixed water mixing box as shown in Figure 3-1. The mixed water sensor monitors flow changes through the unit and provides a feed-forward signal to the Controller proportional to the change in flow. The mixed water temperature provides an instantaneous feed-forward response for loads ranging from 0.5 GPM to the maximum Water Heater flow. The Water Heater uses a cartridge circulator to create reliable mixed flow conditions in the mixing box.

The Controller provides a 0-to-10 VDC output signal to the MXG-461 Control Valve Actuator. This 0 to 10 VDC signal proportionally modulates the Control Valve position from fully closed (0 VDC) to fully open (10 VDC). The control signal varies as necessary to maintain the setpoint temperature programmed into the Controller. Under normal conditions, the unit's outlet temperature is maintained within $\pm 4^{\circ}$ F of the desired setpoint based on a load change of 50% or less. Surface-mount sensors and digital displays are also provided in the ECS/SP Control System to monitor the supply and return water temperatures of the boiler water.


3.4 OVER-TEMPERATURE CONTROL AND SAFETY FEATURES

The Control Box contains an Over-Temperature Switch which continuously monitors and displays the unit's outlet water temperature from input received from the thermocouple installed in the hot water outlet port. Normally, the Over-Temperature Switch is set 20°F above the unit's setpoint temperature. If the programmed over-temperature limit is exceeded, the Over-Temperature Switch is activated. This in turn sounds an audible alarm, disconnects power from the Control Valve Actuator moving the Control Valve to the full-bypass position (B – AB). It should be noted that the Over-Temperature Switch has a slightly slower response to temperature changes than the Temperature Controller. Therefore, slightly different temperature readings may appear momentarily in their respective displays, particularly during system start-up.

The Control Valve Actuator also incorporates a "Fail-Safe" feature which automatically closes the valve if there is a loss of the 0 to 10 VDC control signal or loss of input power. The 24 VAC power supply transformer has an integral 3 amp circuit breaker to protect the Control Valve electronics.

CHAPTER 3 – FUNCTIONAL DESCRIPTION

NOTES:

- 1. THE BW TC IN & BW TC OUT THERMOCOUPLES ARE CONNECTED TO DISPLAY DEVICES IN THE CONTROL BOX. THESE ARE "INDICATION ONLY" DISPLAYS WHICH MAY BE USER-CONFIGURED FOR ALARM SETTINGS.
- 2. THE BOILER WATER BYPASS LINE IS NORMALLY OPEN (3-WAY VALVE CONFIGURATION). FOR A 2-WAY CONFIGURATION, CLOSE THE VALVE ON THE BYPASS LINE. ENSURE THAT A BYPASS LINE IS INSTALLED EXTERNAL TO THE SMART PLATE.

Figure 3-1. SmartPlate Water Heater Functional Block Diagram

CHAPTER 3 – FUNCTIONAL DESCRIPTION

(This Page Is Intentionally Blank)

CHAPTER 4 – ADJUSTMENT

CHAPTER 4. ADJUSTMENT

4.1 INTRODUCTION

This chapter provides the adjustment procedures for the 3-Way Control Valve, MXG-461 and the SmartPlate Electronic Control System (ECS/SP).

Prior to shipment from AERCO, all MXG-461 Control Valve Actuators are adjusted (autostroked) to ensure that they properly position the Control Valve from the fully-open to the fullyclosed positions. In addition, the ECS/SP is adjusted to the Setpoint Temperature specified on the Sales Order.

It is recommended that the following procedures be performed to the extent necessary prior to placing the SmartPlate Water Heater into operation. Also, the applicable procedures MUST be performed following replacement of the MXG-461 Control Valve or ECS/SP components to ensure that all parameters are properly set.

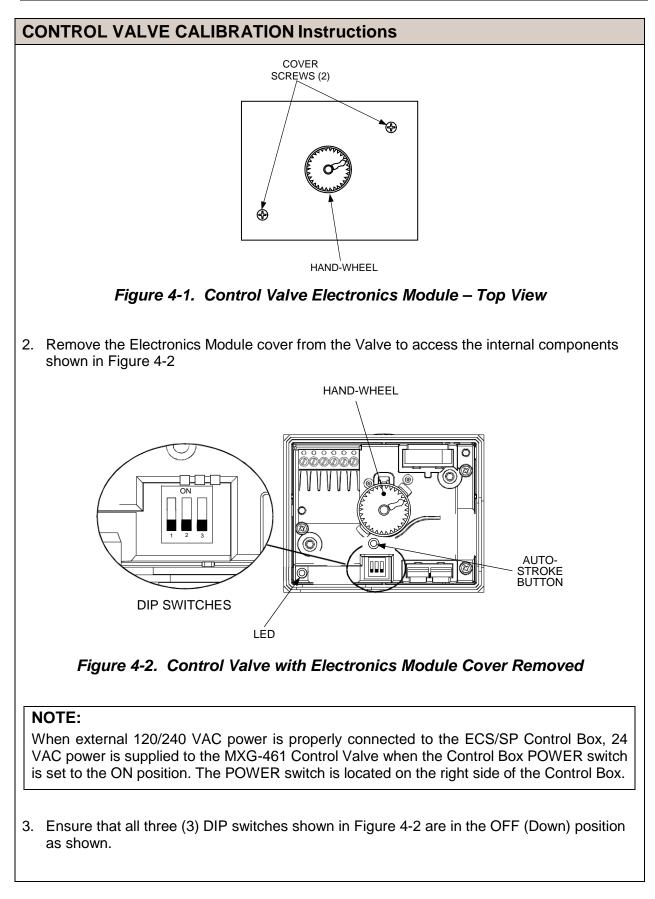
CAUTION!

As a precaution, ensure that all heating fluid hot boiler water shutoff valves are fully closed prior to performing any of the following adjustment procedures.

4.2 SMARTPLATE 3-WAY CONTROL VALVE, MXG-461 ADJUSTMENT

The 3-Way Control Valves, (Siemens, MXG-461) used on all SmartPlate models are powered by 24 VAC. For SmartPlate Water Heater applications, each 3-Way Valve is controlled by a 0 to 10 VDC signal received from the Temperature Controller (Eurotherm 2408) contained in the ECS/SP. A 0 VDC signal places the Control Valve in the full bypass position from port B to port AB (valve shaft up). A 10 VDC signal places the Control Valve in the full flow position from port A to port AB (valve shaft down).

4.2.1 CONTROL VALVE CALIBRATION AND STATUS INDICATIONS


The control Valve Actuators are self-calibrating for all Valve sizes. Therefore, simply proceed as follows to automatically adjust the Valve Actuator:

CONTROL VALVE CALIBRATION Instructions

1. Refer to Figure 4-1 and loosen the two (2) captive screws securing the cover on the Electronics Module of the MXG-461 Control Valve.

CHAPTER 4 – ADJUSTMENT

CHAPTER 4 – ADJUSTMENT

CONTROL VALVE CALIBRATION Instructions

- 4. Set the ECS/SP Control Box POWER switch to the ON position to apply 24 VAC power to the Control Valve Actuator (pins 1 (G0) and 2 (G). Ensure the Valve is in the AUTO position, the LED indicator will light green continuously indicating that Valve operation is normal (no faults).
- 5. Using a pin or paper clip, depress the auto-stroke button in the opening of the terminal housing (Figure 4-2). This will initiate calibration of the Control Valve.
- 6. During actuator calibration, the LED indicator (Figure 4-2) will flash green for approximately 10 seconds. The Control Valve will be briefly closed and fully opened.
- 7. Upon successful completion of the Valve calibration process, the LED indicator will stop flashing and remain ON continuously green.
- 8. The two-color (Red/Green) indicator is useful in determining the operating status of the Control Valve. Refer to Table 4-1 for descriptions of the possible LED status displays which may be encountered.

TABLE 4-1. Control Valve MXG-461 LED Status Indicators		
LED Display	Status	Description
	On continuously	Automatic Mode (normal, no faults)
LED green		- Mechanically set to MANUAL
LED green	Flashing	- Mechanically set to OFF
		- Currently in Auto-Calibrate Mode
	LED red On continuously	- General fault
		- General calibration fault
LED red		- Microprocessor fault
	Flashing	- Faulty 24 VAC supply (Too low)
	LED Off	- No 24 VAC supply
		- Electronics Module fault

9. Turn off power to the Control Valve by setting the ECS/SP Control Box POWER switch to the OFF position.

10. Replace and secure the Electronics Module cover by tightening the two captive screws.

WARNING!

MANUAL CONTROL OPERATION OF THE 3-WAY VALVE DISABLES THE OVER-TEMPERATURE & POWER LOSS SAFETY SHUTDOWN FEATURES OF THE SYSTEM. MANUAL OPERATION IS ONLY USED FOR PROBLEM DIAGNOSIS.

CHAPTER 4 – ADJUSTMENT

4.2.2 MANUAL CONTROL OF 3-WAY VALVE – REMOVABLE HANDWHEEL TO HAMPER TAMPERING

If desired, the control path (A-to-AB) of the Control Valve, (Siemens, MXG-461) can be opened manually up to 95% of full-stroke. Refer to Figure 4-3 and proceed as follows:

MANUAL CONTROL OF 3-WAY VALVE Instructions

- 1. .Remove the water heater from service prior to using the manual operating mode.
- 2. Press the handwheel inward and rotate it clockwise to the MANUAL position. This will disable the 0 to 10 VDC control signal from the ECS/SP Temperature Controller. The Valve can now be mechanically rotated. The temperature control system is now disabled. Be sure to return to the AUTO mode prior to returning the system to heating service use (see step 4).
- 3. To disable automatic control of the Valve, press the handwheel inward and rotate it counterclockwise to the OFF position. This will close the Valve.
- 4. To set the Valve for automatic (AUTO) operation, rotate the handwheel to the AUTO position. The handwheel will pop up when in the AUTO position, thereby allowing it to be controlled by the ECS/SP Temperature Controller.

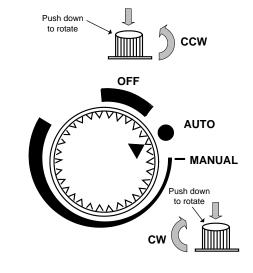


Figure 4-3. Control Valve Auto, Manual and Off Positions

The SmartPlate Electronic Control System (ECS/SP) is preset at the setpoint temperature specified on the Sales Order. The over-temperature alarm limit is normally set 20°F above the specified setpoint. If no setpoint or over-temperature alarm limit is specified, the ECS/SP will be set to the Factory Default values of 140°F (setpoint) and 160°F (over-temperature alarm limit). If changes are required, the setpoint and over-temperature alarm limits can be easily changed. This is accomplished using the controls provided on the Temperature Controller and the Over-Temperature Switch contained in the Control Box shown in Figure 4-4. These items can be viewed through the window on the front door of the Control Box. To access these controls and adjust the setpoint or over-temperature alarm limit, open the hinged Control Box door. Proceed as indicated in sections 4.2.3 or 4.2.4 to adjust the required parameters:

CHAPTER 4 – ADJUSTMENT

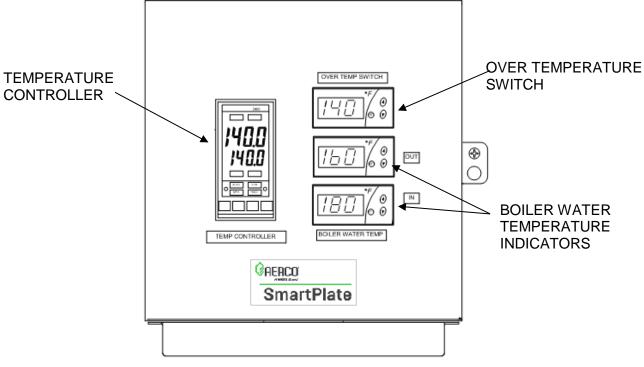


Figure 4-4. Control Box – Front View

NOTE:

When the Power Switch on the Control Box is set to the ON position, it also energizes the internal 24 VAC Transformer in the Control Box. This in turn provides 24 VAC power to the Control Valve Actuator, provided that the water temperature at the heater outlet is below the high temperature limit setting.

4.2.3 SETPOINT TEMPERATURE ADJUSTMENT

The setpoint temperature is adjusted using the controls and displays provided on the Temperature Controller (Eurotherm 2408). These controls and displays are illustrated and described in Figure 4-5 and Table 4-2. If necessary, setpoint temperature adjustment is accomplished as follows:

SETPOINT TEMPERATURE ADJUSTMENT Instructions

- With the Control Box door open, set the ON/OFF POWER switch on the right side to the ON position. The Temperature Controller will initiate a self-test for approximately 3 seconds. Following the self-test, the top display will show the current outlet water temperature of the unit and the lower display will show the current setpoint temperature stored in memory (default = 140°F).
- 2. Ensure that the Temperature Controller is set to the AUTO (automatic) mode and the AUTO indicator is lit. If the MAN indicator is lit, press the AUTO/MAN button to toggle the mode setting. Indicator OP1 should also be lit.

CHAPTER 4 – ADJUSTMENT

SETPOINT TEMPERATURE ADJUSTMENT Instructions

- 3. If the lower display does not show the desired setpoint temperature, press the ▲ or ▼ arrow button to change the display to the desired value.
- 4. Two seconds after the ▲ or ▼ arrow button is released, the display will blink to indicate that the Temperature Controller has accepted and stored the displayed value.

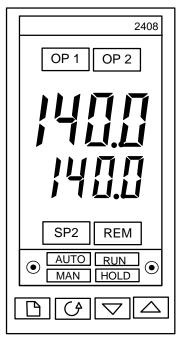


Figure 4-5. Temperature Controller

A WATTS Brand

CHAPTER 4 – ADJUSTMENT

SETPOINT TEMPERATURE ADJUSTMENT Instructions

CONTROL or INDICATOR	MEANING	FUNCTION
OP1	Output 1 Indicator	OP1 lights when a 0 to 10 VDC signal is being supplied to the ECSSP Valve Actuator
OP2	Output 2 Indicator	Not used for the ECS/SP application
SP2	Setpoint 2 Indicator	Not used for the ECS/SP application
REM	Remote Setpoint Indicator	REM lights when the ECS/SP is set up to be controlled by a Remote (Modbus) signal. REM will also flash when Modbus communication is active.
AUTO MAN	Auto/Manual Button and Indicators	 When button is pressed, the Controller is toggled between the automatic (AUTO) and manual (MAN) modes. When first set to manual the valve will close and show zero percentage (0 %) on the display. AUTO lights when in the automatic mode. (Setpoint temperature setting appears in lower display) MAN lights when in the manual mode. (Valve percent open appears in lower display)
RUN HOLD	Run/Hold Button and Indicators	Not used for ECS/SP application
(a)	Page Button	Press Page button to select a new list of parameters
(b) (d)	Scroll Button	Press Scroll button to select a new parameter in a list
(c)	Down Button	Press to decrease the value shown in the lower display
(d)	Up Button	Press to increase the value shown in the lower display

CHAPTER 4 – ADJUSTMENT

4.2.4 OVER-TEMPERATURE ALARM LIMIT ADJUSTMENT

The over-temperature alarm limit setting is adjusted using the controls and display on the Over-Temperature Switch. The alarm limit is normally set 20°F above the specified setpoint. The controls and display are illustrated and described in Figure 4-6 and Table 4-3. If necessary, over-temperature alarm limit adjustment is accomplished as follows:

REPOSITIONING ECS/SP CONTROL BOX Instructions

- 1. With the Control Box door open, set the ON/OFF POWER switch on the right side to the **ON** position.
- 2. Press the **SET** button on the Over-Temperature Switch. SP will appear in the display.
- Press the SET button again. The current over-temperature limit value stored in memory will be displayed. (default = 20°F above setpoint specified on Sales Order, or 160°F if no setpoint is specified).
- 4. If the display does not show the desired over-temperature alarm setting, press the ▲ or ▼ arrow button to change the display to the desired temperature setting.
- 5. Once the desired over-temperature alarm setting is displayed, press the **SET** button to store the setting in memory.
- 6. To calibrate the offset (P1), press and hold the **SET** button for 8 seconds on the Over-Temperature Switch. Access code value 0 is shown in the display. The switch comes from the factory with the code set at 0. AERCO recommends that you do not change this code.
- 7. Press the **SET** button again to enter the code. The first parameter label (SP) will appear in the display.
- 8. Using the \blacktriangle and \triangledown arrow keys, select parameter P1.
- 9. Press **SET** to view the value stored in memory.
- 10. If the desired value is not displayed, modify the setting using the ▲ and ▼ arrow keys. The value can be changed from -10° to +10° offset. Press **SET** to enter the value and exit to the text parameter.
- 11. To exit the programming mode, press the **SET** and **▼** buttons simultaneously, or simply wait one minute and the display will automatically exit the programming mode.
- 12. Once the programming mode has been exited, the display will show the unit's current outlet water temperature.

Figure 4-6. Over-Temperature Switch

CHAPTER 4 – ADJUSTMENT

REPOSITIONING ECS/SP CONTROL BOX Instructions

CONTROL or		
INDICATOR	MEANING	FUNCTION
LED Display	TEMP status	Displays current water temperature or setpoint.
RST	RESET Button	Resets the unit after an alarm condition.
\triangle	UP Button	Increases the displayed temperature.
\bigtriangledown	DOWN Button	Decreases the displayed temperature.
SET	SET Button	Used to access and store parameters in the unit.

(This Page Is Intentionally Blank)

CHAPTER 5 – OPERATION

CHAPTER 5. OPERATION

5.1 INTRODUCTION

This chapter provides the pre-operational checks, initial start-up and operating procedures for SmartPlate Water Heaters.

WARNING!

FLUIDS MUST BE GRADUALLY INTRODUCED TO THE UNIT. FAILURE TO DO SO CAN CAUSE DAMAGE TO HEAT EXCHANGER PLATES. WHEN UNIT IS EMPTY OR COLD, DO NOT ADMIT HOT FLUID TO THE UNIT SUDDENLY. WHEN UNIT IS HOT, DO NOT SHOCK WITH COLD FLUID.

CAUTION!

Do NOT operate equipment exceeding design conditions as specified on the nameplate.

SmartPlate Water Heaters must never be subjected to pressure greater than the maximum differential pressure specified on the nameplate.

Sudden rises in pressure may cause leakage or damage to plates or gaskets of double-wall models and damage single-wall heat exchangers.

5.2 PRE-OPERATIONAL CHECKS & PROCEDURES

All SmartPlate Water Heater installation procedures provided in Chapter 2 must be fully completed prior to performing Pre-Operational checks. In addition, the following items should be checked:

PRE-OPERATIONAL CHECKS & PROCEDURES Instructions

- 1. Ensure that external single-phase AC power at 120 VAC/60 Hz or 240 VAC/50 Hz is properly connected to the ECS/SP Control Box.
- 2. Verify that the ECS/SP Temperature Controller setpoint and Over-Temperature Switch alarm limit have been properly set using the procedures in Chapter 4 *Adjustment*.
- 3. Open the isolation valve in the unit' cold water inlet line (see Figure 1-1).
- 4. The air vent, located in the top of the mixing box, allows air to escape during the fill process (a hissing sound may be heard). If a hissing sound is not heard through the air vent, close the air vent cap and then open it 2 full turns counterclockwise. Do Not remove the air vent cap.
- 5. On 150 PSI units, when the hissing sound from the air vent stops, carefully open the Relief Valve to vent any remaining air, and then close the Relief Valve when the heater is full.

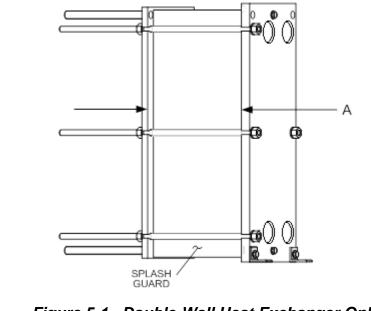
CHAPTER 5 – OPERATION

5.3 INITIAL START-UP

In order to prevent a possible over-temperature condition during initial start-up, AERCO recommends that the following steps be performed in the order specified:

INITIAL START-UP Instructions

- 1. With the ECS/SP Control Box door open, set the POWER switch on the right side of the box to the ON position. This will provide power to the complete ECS and MXG-461 Control Valve. When power is initially applied, the ECS/SP Temperature Controller automatically performs a self-test sequence for approximately three seconds. Proceed immediately to the next step.
- 2. Upon completion of the self-test, the Temperature Controller will show the present water heater outlet temperature in the upper display and the setpoint temperature in the lower display.
- 3. Press the AUTO/MAN button on the front panel of the Temperature Controller (Figure 4-5) and toggle the display to the MAN (Manual) mode. The MAN indicator will light when the Manual mode is selected.
- 4. When in the Manual mode, the upper display will continue to show the current outlet water temperature of the heater. The lower display will show the position of the MXG-461 Control Valve Actuator in %. When the Manual mode is initially selected, the lower display will show 0%, indicating that the Control Valve is fully closed.
- 5. Open the stop valve in the building recirculation system, if employed.
- 6. Open the isolation valve in the hot water outlet line. Connect a hose to the field-piped "Hose Connection" (see Piping Diagrams in Appendix C) or open several hot water fixtures in the building to ensure water flow through the heater.
- 7. Slowly open the isolation valves in the boiler water inlet and boiler water outlet connections of the heater.
- 8. Using the ▲ arrow button, set the MXG-461 Control Valve to the 10% position and monitor the outlet water temperature of the heater.
- 9. Next, continue to increase the valve "open" position in 5% increments until the water temperature starts to increase at a moderate rate.
- 10. When the outlet water temperature has increased to within 20°F of the desired setpoint, press the AUTO/MAN button and toggle the Temperature Controller to the AUTO mode. The AUTO indicator will light and the MAN indicator will go off. When in the AUTO mode the upper display will continue to show the outlet water temperature of the heater. The lower display will show the selected setpoint temperature.
- 11. When in the AUTO mode, the ECS will stabilize at the selected setpoint temperature (see Chapter 3). Once stabilized, the ECS/SP is set for unattended operation with no further operator intervention.
- 12. Check the boiler water differential pressure gauge (Figure 1-1) to ensure that the indicator dial is in the green area. If the dial moves to the red or yellow area, refer to Chapter 8 *Corrective Maintenance.*
- 13. Close the hose connection or hot water fixtures opened in step 6.
- 14. During start-up of Double-Wall models, there may be some evidence of leakage prior to the plates and gaskets reaching their working temperature. If leakage continues, check to ensure that dimension "A" in Figure 5-1 is correct within ±1% of the value shown on the channel plate assembly instructions. (Refer to Chapter 8, section 8.7.1 for details).


CHAPTER 5 – OPERATION

5.4 CHECKING MIXED INLET TEMPERATURE

If desired, the water heater mixed inlet temperature can be monitored using the controls and displays on the Temperature Controller. This is accomplished as follows:

CHECKING MIXED INLET TEMPERATURE Instructions

- 1. Press the Page (🗅) button and select iP.
- 2. Next, press the Scroll () button and scroll to Li.2.
- 3. When **Li.2** is shown in the upper display, the lower display will show the water heater mixed inlet temperature. The temperature will be displayed for several seconds and then the Controller will revert to the default displays (outlet water temperature and setpoint).

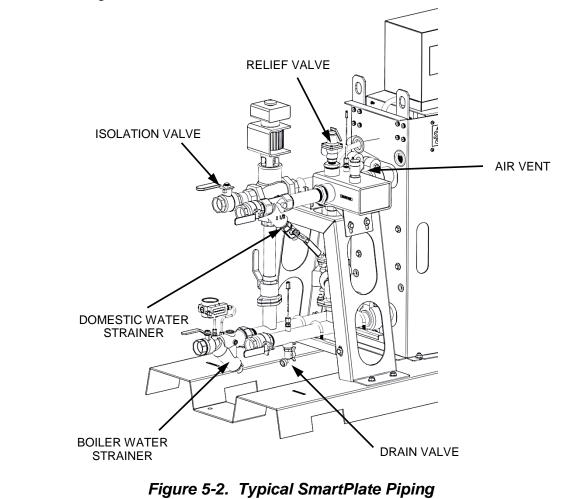
5.5 SHUTTING DOWN THE SYSTEM

To shut down the Water Heater for a short period of time, simply turn OFF power and close the isolation valves as described in steps 1 and 2 below. However, if the unit will be shut down for an extended period of time, it will be necessary to drain the unit using the appropriate steps listed below for the type of heat exchanger used (single-wall or double-wall). Proceed as follows:

SHUTTING DOWN THE SYSTEM Instructions

- 1. Turn the POWER switch on the side of the ECS/SP Control Box to OFF.
- 2. Close all four of the Isolation Ball Valves (Figure 8-1).
- 3. Connect a drain hose to the Strainer on the Boiler Water side of the piping assembly (Figure 5-2). Open the valve on the Strainer and drain the boiler water from the unit. It will be necessary to loosen a Victaulic coupling by the heat exchanger to allow air into the pipe during draining.

CHAPTER 5 – OPERATION


SHUTTING DOWN THE SYSTEM Instructions

- 4. Next, connect a hose to the Drain Valve on the DHW Side of the piping assembly. Open the Relief Valve to allow air into the pipe during draining.
- 5. Open the Drain Valve to drain the domestic water from the unit.
- 6. After the boiler water and domestic water have been drained from the unit, close the Relief Valve opened in step 4 and tighten the Victaulic coupling loosened in step 3.

CAUTION!

Step 7 applies ONLY to SmartPlate Double-Wall models. Skip this step for all Single-Wall models.

7. For SmartPlate Double-Wall Water Heater models, it is also advisable to separate and clean the plates using the procedures in Chapter 8, section 8.6.2. Leave the double-wall heat exchanger in an un-tightened or slightly tightened condition. Cover the heat exchanger with dark plastic to protect it from welding light and dirt (rubber gaskets are sensitive to welding light). Do not store organic solvents or acids in the room. Avoid heat or ultraviolet light.

8. To place the Water Heater back in service, fill the unit and perform the pre-operational checks and start-up procedures described in sections 5.2 and 5.3.

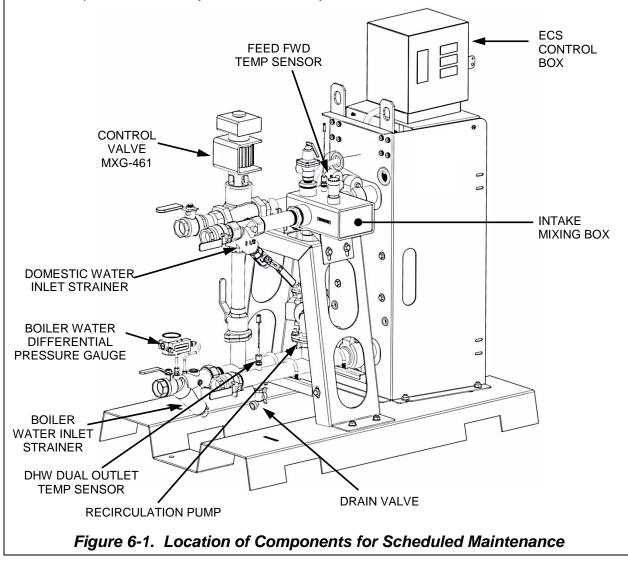
CHAPTER 6. SCHEDULED MAINTENANCE

6.1 INTRODUCTION

SmartPlate Water Heaters require regular routine maintenance to keep the unit operating at optimum efficiency. AERCO recommends that the tasks listed in Table 6-1 – Scheduled Maintenance Action, be performed at the periodic intervals specified. Table 6-1 consists of three columns arranged as follows:

- <u>Interval Column</u>. The Interval column contains alphabetical symbols which list all of the recommended scheduled maintenance tasks contained in this chapter. The following interval symbols shall be used in the order of increasing intervals: W (Weekly), Q (Quarterly), S (Semi-Annually), A (annually) and P (periodic).
- <u>Maintenance Action Column</u>. This column lists the required maintenance action which corresponds to the interval symbol in the previous column.
- <u>Reference Column</u>. This column lists the section number containing the required procedure.

TABLE 6-1.	TABLE 6-1. Scheduled Maintenance Actions					
Interval	Maintenance Task	Reference				
W	Check Boiler Water Differential Pressure Gauge.	6.2				
W	Double-Wall Only: Check plate packs for leakage	6.3				
Q	Every 3 months, check the operation of the Over-Temp Switch in the ECS/SP Control Box	6.4				
Q, S	After the first 3 months, check the operation of the Control Valve in the Boiler Water piping. Then, check operation every 6 months.	6.6				
S	Every 6 months, check the Strainers on both the Boiler Water and Domestic Water Piping.	6.5				
А	Once each year, check the Temperature Sensors	6.7				
А	Once each year, check the operation of the Recirculation Pump	6.8				
Р	Periodic cleaning of the heat exchanger may be necessary, depending on conditions and settings.	6.9				

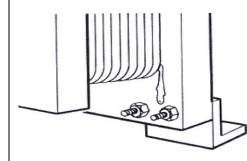


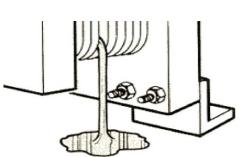
6.2 BOILER WATER DIFFERENTIAL PRESSURE GAUGE CHECK

Once each week check the Differential Pressure Gauge on the unit's Boiler Water Inlet as follows:

BOILER WATER DIFFERENTIAL PRESSURE GAUGE CHECK Instructions

- 1. Refer to Figure 6-1 and locate the Differential Pressure Gauge.
- 2. Check to ensure that the Gauge reading is in the Green area on the dial.
- 3. If the Gauge is reading in the Red area of the dial, attach a hose to the blow-down valve at the base of the Strainer. Cycle the blow-down valve open and closed 6 times.
- 4. If the Gauge still reads in the Red area on the dial, you may have too much boiler water flow through the unit, or the strainer may be clogged. If the strainer has just been cleaned, try reducing the flow rate. Refer to Chapter 8 *Corrective Maintenance* to repair or replace the Differential Pressure Gauge.
- 5. If the Gauge reading is in the Green area for 3 consecutive weeks, this maintenance task can be performed monthly, instead of weekly.




6.3 PLATE PACK LEAKAGE CHECKS (DOUBLE-WALL MODELS ONLY)

For SmartPlate Double-Wall Water Heater models, check the Plate Pack for leaks as follows:

PLATE PACK LEAKAGE CHECKS Instructions

- 1. Remove the splash guard to access the Plate Pack (see Figure 5-1).
- 2. Check for leakage between the Plate Pack and Frame [see Figure 6-2 (A)].
 - a) If there is evidence of leakage, use a felt-tip marker to mark the area where the leakage appears to be coming from.
 - b) Refer to Chapter 8, sections 8.7 and 8.8 to correct the cause of the leakage.
- 3. Check for leakage between plates to the outside [see Figure 6-2 (B)]
 - a) If there is evidence of leakage, mark the area with a felt tip marker on the two plates next to the leakage.
 - b) Refer to Chapter 8, section 8.7 and 8.8 to correct the cause of the leakage.
- 4. If there is no evidence of leakage, replace the splash guard on the Plate Pack and return the unit to service use.

(A) LEAKAGE BETWEEN PLATE PACK & FRAME (B) LEAKAGE BETWEEN PLATES TO OUTSIDE

Figure 6-2. Double-Wall Heat Exchanger Leakage Checks - Splash Guard Removed

6.4 OVER-TEMP SWITCH CHECK

Once every 3 months, check the Over-Temp Switch located in the ECS/SP Control Box as follows:

OVER-TEMP SWITCH CHECK Instructions

1. Refer to Chapter 4, section 4.2.4 and lower the Over-Temp setting to approximately 5°F below the present setpoint temperature shown in the lower display of the Temperature Controller.

OVER-TEMP SWITCH CHECK Instructions

- 2. Verify that an Over-Temp Alarm is generated and the following events occur:
 - a) The Control Valve (Siemens MXG-461) closes.
 - b) The Over-Temp Switch generates an audible alarm.
- 3. Following successful completion of the Over-Temp alarm check, return the Over Temp Switch setting to its original setting (20°F above the unit's setpoint).

6.5 STRAINER INSPECTION AND CLEANING

Every 6 months, check and clean the Strainers in both the Boiler Water and Domestic Water piping of the unit. Perform the following steps for each Strainer:

STRAINER INSPECTION AND CLEANING Instructions

- 1. Attach a hose to the blow-down valve at the base of the Strainer. Cycle the blow-down valve open and closed 6 times.
- 2. If the Strainer cannot be cleared using the procedure described above, refer to Chapter 8 *Corrective Maintenance*, section 8.12.

6.6 CONTROL VALVE OPERATIONAL CHECK

Refer to Chapter 4, section 4.2 and recalibrate the Control Valve. Also, check the LED indicator to ensure the Valve is functioning correctly.

NOTE:

To avoid repeated draining of the Water Heater, perform the annual scheduled maintenance checks specified in section 6.9 at the same time.

6.7 TEMPERATURE SENSOR CHECKS

SmartPlate Water Heaters contain a Feed-Forward Temperature Sensor in the Mixing Box and a Dual Temperature Sensor in the DHW Outlet Port. Once each year, these Sensors should be checked to ensure there is no scale build-up.

TEMPERATURE SENSOR CHECKS Instructions

- 1. Turn the POWER switch on the side of the ECS/SP Control Box to **OFF** to disconnect AC power from the unit.
- 2. Close the Inlet and Outlet Isolation Valves on the Boiler Water and DHW lines of the unit.
- 3. Connect a hose to the Drain Valve and run it to a convenient floor drain. Open the Drain Valve near the DHW Outlet to drain the water from the pipes and heat exchanger.
- 4. Disconnect and remove the Single Feed-Forward Sensor from the Mixing Box and the Dual Outlet Temperature Sensor from the DHW Outlet Port (Figure 6-1).

TEMPERATURE SENSOR CHECKS Instructions

- 5. Inspect the Sensors for evidence of scale build-up on the stainless-steel sleeve of the Sensors. If necessary, clean the Sensors using a wire brush.
- 6. In addition to the immersion Sensors mentioned above, check the attachment of the surface-mount Sensors on the Boiler Water Inlet and Outlet piping.

6.8 RECIRCULATION PUMP CHECK

The Recirculation Pump is installed between the DHW inlet and outlet pipes beneath the Mixing Box.

WARNING!

PRIOR TO PERFORMING THE FOLLOWING STEPS, ENSURE THAT THE POWER SWITCH ON THE SIDE ECS/SP CONTROL BOX IS OFF AND THE HEATER HAS BEEN DRAINED AS SPECIFIED IN THE PREVIOUS SECTION.

PLATE PACK LEAKAGE CHECKS Instructions

- 1. Make sure that the POWER switch on the Control Box is OFF.
- 2. Ensure that the Drain Valve is open and the water has been drained from the unit.
- 3. Locate the Recirculation Pump and disconnect the flanges from the piping.
- 4. Carefully slide the Pump out and rotate to inspect. DO NOT pull on the electrical conduit when removing Pump.
- 5. If there is evidence of scale build-up, disconnect the conduit and electrical power connections from the Pump. Service or replace the Pump as necessary.
- 6. If there is no evidence of scale build-up on the Recirculation Pump, reinstall the Pump and reconnect the flanges.

6.9 PERIODIC CLEANING OF HEAT EXCHANGER

It may be necessary to de-scale the heat exchanger periodically, depending on water conditions and temperature settings. Section 8.2 describes the descaling process for the Water Heater's heat exchanger.

The frequency of cleaning can be determined locally based on the performance of the heater and/or prior experience with similar equipment. Generally, the cleaning requirements will follow the trends shown in Table 6-2:

TABLE 6-2. Heat Exchanger Cleaning Guidelines						
Projected Cleaning Frequency						
Operating Conditions	Rarely	Annually	Semi-Annually	Monthly		
Boiler Water Inlet Temp	<150ºF	~170ºF	~200°F	~220ºF		
Domestic Water Setpoint	<130°F 140 - 160°F 160 - 180°F					
Calcium Hardness Level	<20 mg/L	20 - 40 mg/L	40 - 60 mg/L	>80 mg/L		

If calcium hardness level, boiler water inlet temperature, and domestic water setpoint fall under different cleaning intervals in Table 6-2, the heat exchanger may be cleaned between those periods, starting with the most frequent interval. During the next few cleaning intervals observe how much scale is removed to determine if less frequent intervals can be followed.

Example:

BW inlet temperature = 180°F

Domestic water setpoint = 140°F

Calcium Hardness level = 40 mg/L

Heat exchanger Cleaning Frequency: Start out with semi-annually (every six months) schedule (180°F BW falls under semi-annually and the DHW setpoint and calcium hardness level fall under annually). Observe the next few cleanings on how much scale is removed to determine if an annual (yearly) cleaning frequency is more appropriate.

NOTE:

Refer to section 8.2 and 8.5 for heat exchanger maintenance procedure.

CHAPTER 7 – TROUBLESHOOTING

CHAPTER 7. TROUBLESHOOTING

7.1 INTRODUCTION

The troubleshooting procedures provided in this chapter are intended to aid service and maintenance personnel in isolating the most probable cause of a fault in a packaged SmartPlate Water Heater. Prior to performing the troubleshooting steps and procedures in this chapter, perform the following preliminary checks:

TROUBLESHOOTING Instructions

- 1. Ensure that external AC power at 120 VAC or 220 VAC is being supplied to the SmartPlate ECS/SP Control Box.
- 2. Check to ensure that all Electronic Control System (ECS/SP) electrical cable connections are secure.
- 3. Ensure that the Electronic Control Valve (MXG-461) is securely connected to the cable plug from the ECS/SP Control Box.
- 4. Check the fuse in the ECS/SP Control Box that supplies power the Recirculation Pump an Electronic Control Valve.
- 5. Ensure that both the upstream and downstream shut-off valves are fully open.
- 6. Check the circuit breaker on the 24 VAC Transformer inside the ECS/SP Control Box.

NOTE:

In addition to the procedures contained in this chapter, also check the troubleshooting sections of the Boiler Operation and Maintenance Manual being used with the Water Heater and any other ancillary equipment manuals associated with the installation.

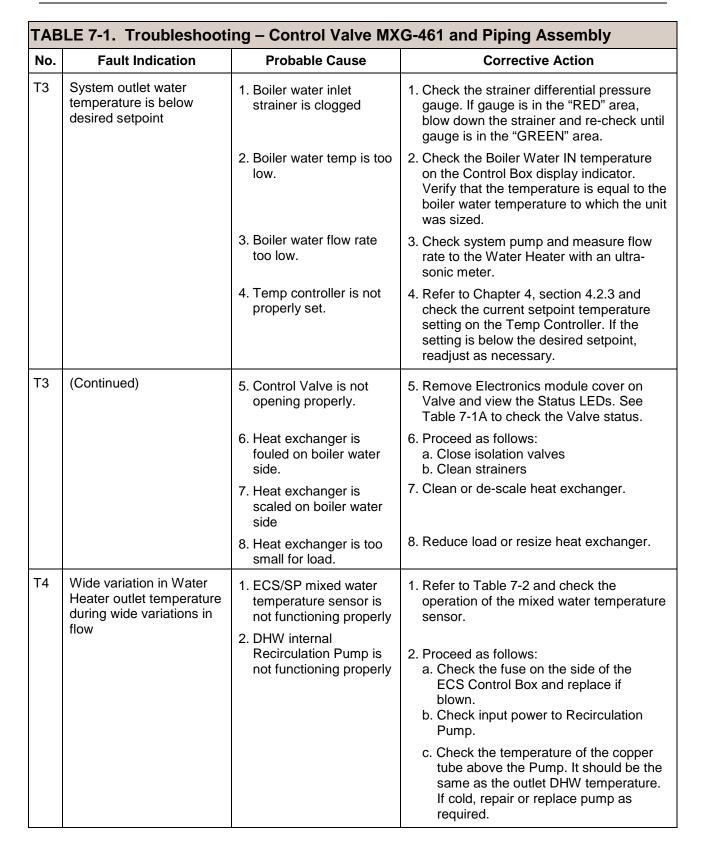
7.2 TROUBLESHOOTING PROCEDURES

Troubleshooting procedures for SmartPlate Water Heaters are provided in Tables 7-1, 7-2 and 7-3. Table 7-1 provides troubleshooting procedures for the MXG-461 Control Valve and Piping Assembly components. Table 7-2 provides troubleshooting procedures for the ECS/SP Electronic Control System. Table 7-3 provides a troubleshooting guide to aid in resolving temperature control issues which may be encountered during Water Heater operation. Also, when troubleshooting ECS/SP faults related to the Temperature Controller (Eurotherm, model 2408), refer to Appendix A for additional information concerning process fault and diagnostic alarms.

When a fault occurs in a SmartPlate Water Heater, proceed as follows to isolate and correct the fault:

TROUBLESHOOTING PROCEDURES Instructions

- 1. Refer to the FAULT INDICATION column in the following tables and locate the fault that best describes the existing conditions.
- 2. Proceed to the PROBABLE CAUSE column and, if more than one item is listed, start with the first item shown for the fault condition.

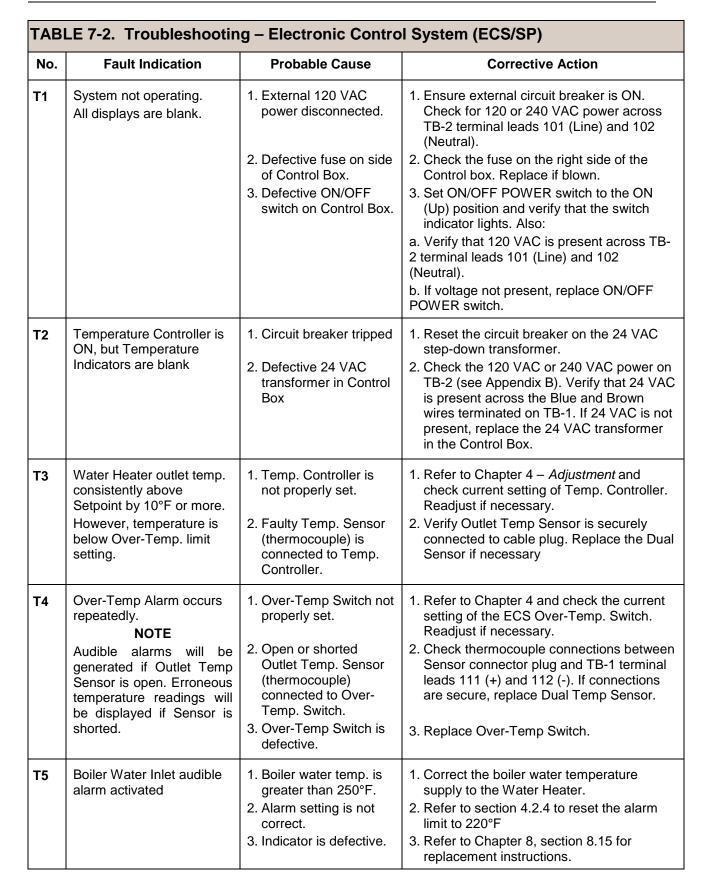

CHAPTER 7 – TROUBLESHOOTING

TROUBLESHOOTING PROCEDURES Instructions

- 3. Perform the corresponding checks and procedures listed in the CORRECTIVE ACTION column for the first PROBABLE CAUSE.
- 4. Continue checking each additional PROBABLE CAUSE for the existing fault until the fault has been corrected.
- 5. Refer to the applicable procedures in Chapter 8 *Corrective Maintenance* if component removal and/or replacement is required.

TAB	TABLE 7-1. Troubleshooting – Control Valve MXG-461 and Piping Assembly					
No.	Fault Indication	Probable Cause	Corrective Action			
T1	System not operating. Control Valve is closed and outlet water temp. is far below setpoint.	1. No power supplied to Control Valve	 Remove Valve Electronics Module cover (Figure 4-1) and verify that 24 VAC power is present at pin 1 of terminal strip. Restore power if necessary. Proceed to Table 7-2 and check Over-Temp Switch and 24 VAC Transformer circuit breaker to ensure they have not tripped. 			
		 Control signal not being supplied from Temp. Controller. 	 Verify presence of a 0 to 10 VDC control signal at pin 5 of terminal strip. If control signal is not present, troubleshoot ECS/SP per Table 7-2. 			
Т2	System over-heats by more than 10°F above the	1. Control Valve is in the MANUAL mode.	1. Ensure Control Valve is set to the AUTO mode.			
	desired setpoint. Outlet temp is below Over-Temp limit setting	2. Control Valve not fully closed.	 Check the 0 – 10 VDC control signal being supplied to Actuator. If signal is greater than 0 VDC when heater outlet temperature is 10°F (or more) above the desired setpoint, proceed to next item in list. 			
		 Temp. Controller not set properly or defective. 	3. Refer to Chapter 4 – <i>Adjustments</i> and check current setting of Temp. Controller. Readjust if necessary. If adjustment does not clear fault, proceed to Table 7-2 and continue.			
		 Control Valve not calibrated correctly Host evelopment cooled 	4. Refer to Chapter 4, section 4.2 and auto- calibrate the valve by pressing the button (Figure 4-2). If Valve stem does not fully stroke up and down, contact AERCO for assistance.			
		5. Heat exchanger scaled on DHW side.	5. Clean and de-scale heat exchanger.			

CHAPTER 7 - TROUBLESHOOTING



CHAPTER 7 – TROUBLESHOOTING

TAB	TABLE 7-1. Troubleshooting – Control Valve MXG-461 and Piping Assembly						
No.	Fault Indication	Probable Cause	Corrective Action				
Т5	Rapid fluctuations in heater outlet temperature which <u>do not</u> follow load changes	1. Temp. Controller is not functioning properly.	1. Refer to Table 7-2 and troubleshoot the Temp. Controller.				

TABLE 7-1A. Control Valve MXG-461 LED Status Indicators					
LED Display	Status	Description			
	On continuously	Automatic Mode (normal, no faults)			
		- Mechanically set to MANUAL			
LED green	Flashing	- Mechanically set to OFF			
		- Currently in Auto-Calibrate Mode			
		- General fault			
LED red	On continuously	- General calibration fault			
LED led		- Microprocessor fault			
	Flashing	- Faulty 24 VAC supply (Too low)			
I FD	Off	- No 24 VAC supply			
		- Electronics Module fault			

CHAPTER 7 – TROUBLESHOOTING

TAB	TABLE 7-2. Troubleshooting – Electronic Control System (ECS/SP)					
No.	Fault Indication	Probable Cause	Corrective Action			
Т6	condition cannot be Sensor.		1. Replace Outlet Temp, Sensor.			
	cleared.	2. Defective Over-Temp. Switch.	2. Replace Over-Temp Switch.			
	Over-Temp Switch displays erroneous temperature readings	3. 3-Way Control Valve not closing fully during no-load conditions.	3. Calibrate 3-Way Control Valve per section 4.2.1.			
		4. A "No-Flow" condition caused a gradual buildup of heat to the water in vessel.	4. Open hot water valve at sink or tub outlet to see if fault clears. If there is no flow through heater, go to Probable Cause 5.			
		5. Water Heater recirculation pump shut off or failed.	5. Check recirculation pump to ensure it is turned on and functioning properly. Also, check pump fuse on side of Control Box.			
Т7	Outlet water temp. far below Setpoint	1. Incorrect Temp Controller setting	 Refer to Chapter 4 and check the current setting of Over-Temp. Switch. Readjust if necessary. 			
		2. Defective Temp. Controller.	2. Remove the cover from the Electronics Module of the Control Valve and verify that the Temp. Controller is generating a control signal greater than 0 VDC. If not replace Temp. Controller.			
		3. Heat exchanger fouled on Boiler Water side.	3. Clean Boiler Water Inlet Strainer. Clean heat exchanger.			
		4. Defective Control Valve Actuator	4. Replace Valve Actuator (SEE TABLE 7.1)			
		5. Boiler water supply temp. is too low.	5. Increase boiler water temperature.			
		6. Boiler Failure	6. Check operational status of Boiler.			
Т8	Wide fluctuations in outlet water temperature during large flow changes.	1. Water Heater Recirculation Pump not operating.	1. Check Control Box fuse and power to pump.			
	la go now onangoo.	 Boiler water temper- ature drops below DHW setpoint during heavy demand, then recovers. 	2. Install Boiler Water Buffer Tank to provide hot water reservoir for the Water Heater to draw from during large load swings.			
		 Boiler water temper- ature drops below DHW setpoint but does not recover until load is reduced. 	3. The boiler water supply is under-sized. Add more boilers or reduce DHW usage.			
		4. Boiler water supply temperature is too high.	4. Control Valve is not seating properly. See Chapter 4 and auto-stroke valve.			

CHAPTER 7 – TROUBLESHOOTING

TABI	TABLE 7-2. Troubleshooting – Electronic Control System (ECS/SP)						
No.	Fault Indication	Probable Cause	Corrective Action				
Т9	Temperature control not within specifications. Items T1 – T8 check out	1. Unexpected system dynamics.	1. See Table 7-3 for Temperature Control Troubleshooting.				
	OK. Wide fluctuations in outlet water temperature under low flow conditions.	2. Outlet Temp Sensor connected to Temp Controller gives inconsistent or intermittent readings.	2. Replace Outlet Temp Dual Sensor at the Water Heater outlet port.				
		 Mixed Water Temp Sensor is open, shorted or gives inconsistent readings. 	3. Replace Mixed Water Temp Sensor.				
		4. Recirculation Pump failure.	4. Replace Recirculation Pump				
T10	Wide fluctuations in outlet water temperature under low flow conditions.	1. Outlet Temp Sensor connected to Temp Controller gives inconsistent or intermittent readings.	1. Replace Outlet Temp Dual Sensor at Water Heater outlet port.				
		2. Mixed Water Temp Sensor is open, shorted or gives inconsistent readings.	2. Replace Mixed Water Temp Sensor.				
		3. Recirculation Pump failure.	3. Replace Recirculation Pump				

NOTE:

Refer to the Dynamic Temperature Control Settings specified in Table 7-3A when performing the Corrective Actions listed in Table 7-3 which follows. Adjustment of Pb, Pb2 and FFPb can be accomplished from the first menu level on the Eurotherm 2408 Controller. Refer to Chapter 4, section 4.2 for procedure.

CHAPTER 7 – TROUBLESHOOTING

TABL	TABLE 7-3. Troubleshooting Guide for Temperature Control Issues						
No.	Observation	Probable Cause	Corrective Action				
T9-1	Too much valve oscillations or too wide outlet temperature oscillation at low flow	Low flow condition may be unsteady or at a critical value for the control system.	Increase the Proportional value (Pb and/or Pb2). Note: This may cause wider temperature deviation with change in domestic flow.				
T9-2	Too wide a deviation in outlet temperature when domestic flow changes System. Many factor contribute to this ty dynamic system variation.		Decrease the Proportional value (Pb and/or Pb2) and/or decrease FeedForward (FFpb). Note 1: This may increase oscillations at low flow. Note 2: A change in FFpb will cause the valve to fully open initially and over temperature may occur. Be sure the domestic outlet is shut to prevent scalding.				
T9-3	On decrease in flow, outlet temperature initially goes up but then under-shoots setpoint too much before coming to setpoint	Dynamic loop response time variation from the engineering development system. Many factors contribute to this type of dynamic system variation.	Increase Proportional (Pb or Pb2) first. If that has little or no effect then increase FeedForward (FFpb. Note: A change in FFpb will cause the valve to fully open initially and over temperature may occur. Be sure the domestic outlet is shut to prevent scalding.				
T9-4	On increase in flow, outlet temperature initially goes down but then overshoots setpoint too much before coming to setpoint	Dynamic loop response time variation from the engineering development system. Many factors contribute to this type of dynamic system variation.	Increase Proportional (Pb or Pb2) first. If that has little or no effect then increase FeedForward (FFpb). Note: A change in FFpb will cause the valve to fully open initially and over temperature may occur. Be sure the domestic outlet is closed to prevent scalding.				
T9-5	After a change in domestic flow, outlet temperature remains too far from setpoint for too long	Dynamic loop response time variation from the engineering development system. Many factors contribute to this type of dynamic system variation.	Decrease Proportional and/or decrease Integral (I1 and/or I2). Note: This may increase outlet temperature oscillations at lower flows.				
Т9-6	Over-temperature alarm or water temperature more than 10°F above the setpoint after a long period of non-usage.	Control valve not closing fully, allowing some hot boiler water to enter the heat exchanger without demand	Recalibrate the valve stroke using the auto-calibration method described in Chapter 4, section 4.2.1.				

CHAPTER 7 – TROUBLESHOOTING

TABLE 7-3A.	Dynamic Te	mperature	Control Set	tings for S	martPlate Si	ngle- Water	Heaters		
Unit Size (SP or SPDW)	Boiler Water Temp (Tbw)	Feed Forward Parameter (FFPb)	Proportional Band 1 (Pb)	*Integral 1 (I1)	* Derivative 1 (D1)	Proportional Band 2 (Pb2)	*Integral 2 (I2)	*Derivative 2 (D2)	*Gain Schedule Cutoff Temp (Gsch)
	<=180 °F	-40	40	20	5	30	20	5	145
SP23	<=200 °F	-40	50	20	5	40	20	5	145
SPDW23	<=220 °F	-50	50	20	5	40	20	5	145
	<=250 °F	-50	60	20	5	50	20	5	145
	<=180 °F	-50	50	20	5	40	20	5	145
SP33	<=200 °F	-50	60	20	5	50	20	5	145
SPDW32	<=220 °F	-60	60	20	5	50	20	5	145
	<=250 °F	-60	70	20	5	60	20	5	145
	<=180 °F	-60	60	20	5	50	20	5	145
SP45	<=200 °F	-60	70	20	5	60	20	5	145
SPDW42	<=220 °F	-70	70	20	5	60	20	5	145
	<=250 °F	-70	80	20	5	70	20	5	145
	<=180 °F	-80	60	20	5	55	20	5	145
SP69	<=200 °F	-80	70	20	5	65	20	5	145
SPDW61	<=220 °F	-95	70	20	5	65	20	5	145
	<=250 °F	-95	80	20	5	75	20	5	145
	<=180 °F	-100	60	20	5	60	20	5	145
SP150	<=200 °F	-100	70	20	5	70	20	5	145
SPDW113	<=220 °F	-120	70	20	5	70	20	5	145
	<=250 °F	-120	80	20	5	80	20	5	145

CHAPTER 7 – TROUBLESHOOTING

(This Page Is Intentionally Blank)

CHAPTER 8. CORRECTIVE MAINTENANCE

8.1 INTRODUCTION

This chapter provides the procedures to correct and repair faults detected during operation or isolated during troubleshooting of SmartPlate Water Heaters. The procedures in this chapter are divided into four sections as follows:

- Section I SmartPlate Single-Wall Water Heater models: Single-Wall heat exchangers do not include any serviceable assemblies and components. Therefore, the procedures in this section are limited to heat exchanger cleaning (de-scaling) removal and replacement.
- Section II Double-Wall Heat Exchanger Corrective Maintenance. This section provides cleaning and corrective maintenance procedures for serviceable internal components of the double-wall heat exchanger.
- Section III SmartPlate Wetted Components All models. This section provides corrective maintenance for major assemblies and components which come in contact with boiler water or domestic hot water during Water Heater operation. These assemblies and components are used on <u>all</u> SmartPlate models (Single-Wall and Double-Wall).
- Section IV SmartPlate Electronic Control System (ECS/SP). This section provides removal and replacement procedures for the internally mounted assemblies and components contained in the ECS/SP Control Box.

SECTION I SMARTPLATE SINGLE-WALL HEAT EXCHANGER MODELS

8.2 SINGLE WALL HEAT EXCHANGER MAINTENANCE

Since the Single-Wall heat exchanger does not contain any serviceable items, the procedures in this section are limited to cleaning (de-scaling) and removal/replacement. These procedures are provided in sections 8.3 and 8.4 which follow.

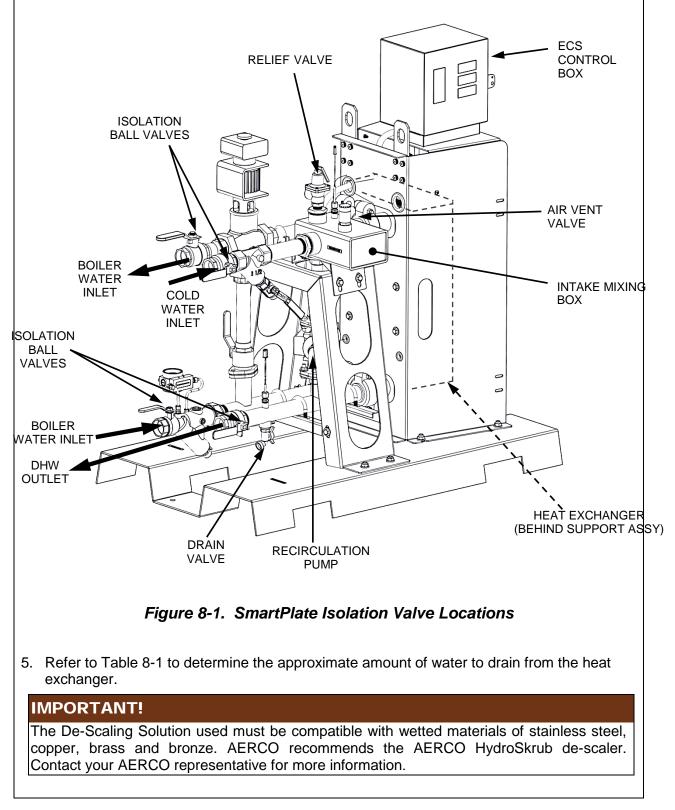
8.3 HEAT EXCHANGER CLEANING & DE-SCALING

Heat exchanger cleaning and de-scaling is accomplished "in-place" using the following procedure:

NOTE:

The "in-place" cleaning and de-scaling procedure described below can also be used for Double-Wall heat exchangers (Section II) which are not clogged with hardened scale deposits.

HEAT EXCHANGER CLEANING Instructions


- 1. Set the POWER Switch on the ECS/SP Control Box to the **OFF** position to stop the Recirculation Pump.
- 2. Close all four Water Heater Isolation Ball Valves (Figure 8-1).

CHAPTER 8 - CORRECTIVE MAINTENANCE

HEAT EXCHANGER CLEANING Instructions

- 3. Connect a hose to the Drain Valve near the DHW Outlet.
- 4. Remove the 1" NPT Air Vent from the top of the Mixing Box.

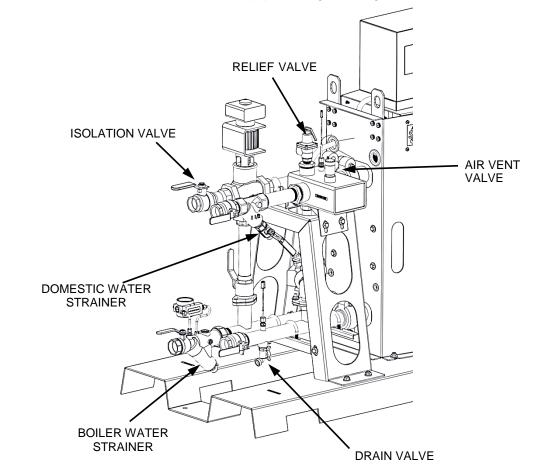
 Page 58 of 134
 AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913
 OMM-0069_0G

 07/14/2017
 Phone: 800-526-0288
 SP-100

 Cooke Industries - Phone: +64 9 579 2185
 Email: sales@cookeindustries.co.nz
 Web: www.cookeindustries.co.nz

CHAPTER 8 – CORRECTIVE MAINTENANCE

SmartPlate Model	Heat Exchanger Volume (gallons)	HydroSkrub Required (Gallons)
Single-Wall Heat Excha	angers	
SP23	1.7	0.9
SP33	2.4	1.2
SP45	3.4	1.7
SP69	5.2	2.6
SP150	11.3	5.7
Double-Wall Heat Exch	angers	
SPDW23	2.0	1.0
SPDW32	2.8	1.4
SPDW42	3.7	1.9
SPDW61	6.0	3.0
SPDW113	10.2	5.1
HydroSkrub into the Air Add water as needed ur Replace the 1" NPT Air	Vent opening in the Mixing B htil the Mixing Box is full. Vent.	
0. Set the Control Box PON Pump is operating.	NER Switch to the ON position	on and ensure that the Recirculation
1 to 3 hours, depending	on the amount of scale depo ling will be hard to estimate,	ugh the heat exchanger and piping sit that is inside the heat exchange it should be based on the time in
2. Upon completion of the to stop the Recirculation		ER Switch on the Control Box to OF
3. Remove the 1" NPT Air	Vent and open the unit's Dra	in Valve.
4. Flush with fresh water fo	or at least 3 minutes.	
5. Next, close the Drain Va	lve and fill with fresh water.	
6. Apply new thermal seala NPT Air Vent and install	· ·	F61 approved) to the threads of the
7. Open the four Isolation I	·	
8. Turn the Control Box PC		t the unit and place it back in servic



8.4 SINGLE-WALL HEAT EXCHANGER REPLACEMENT

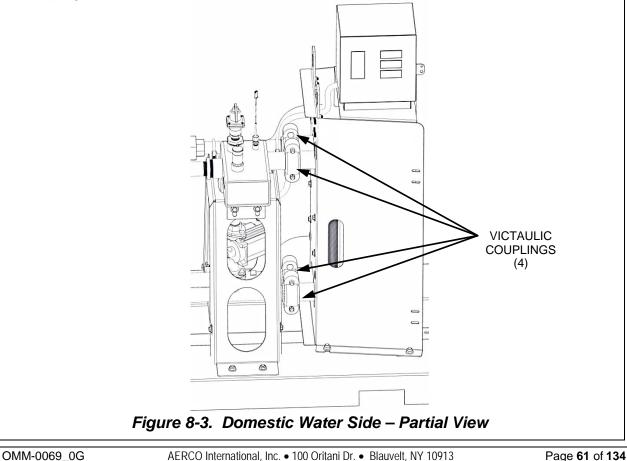
The heat exchanger used in each SmartPlate Single-Wall model is removed and replaced using the following basic procedure:

SINGLE-WALL HEAT EXCHANGER REPLACEMENT Instructions

- 1. Turn the POWER switch on the side of the ECS/SP Control Box to **OFF**.
- 2. Close all four of the Isolation Ball Valves (Figure 8-1).
- 3. Connect a hose to the Strainer on the Boiler Water side of the piping assembly (Figure 8-2). Open the valve on the Strainer and drain the boiler water from the unit. It will be necessary to loosen a Victaulic coupling by the heat exchanger to allow air into the pipe during draining.
- 4. Next, connect a hose the Drain Valve on the DHW Side of the piping assembly and then open the Relief Valve to allow air into the pipe during draining.

Figure 8-2. Draining the SmartPlate Water Heater

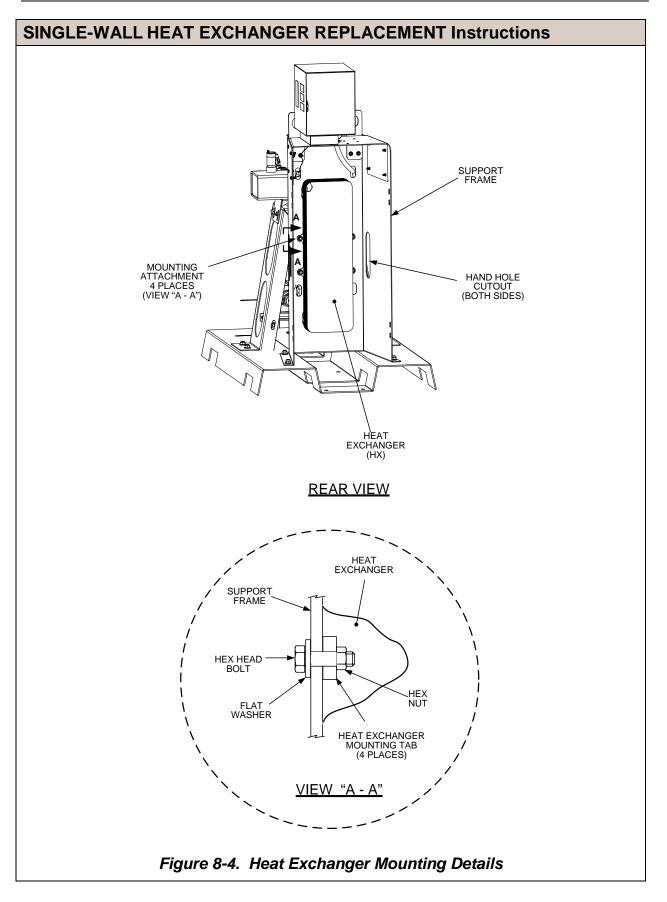
- 5. After the boiler water and domestic water have been drained from the unit, proceed to step 6 to remove the installed heat exchanger.
- 6. Close the Relief Valve opened in step 4.


SINGLE-WALL HEAT EXCHANGER REPLACEMENT Instructions

- Using a ratchet wrench with an extension and a 3/4" deep socket, loosen, <u>but do not</u> <u>remove</u>, the four (4) Victaulic couplings (Figure 8-3). Two (2) couplings are located on the Domestic Water Side (Figure 8-3) and two (2) are located on the Boiler Water Side.
- 8. At the rear of the Water Heater, place a wooden block, or other suitable support, under the Brazed Plate heat exchanger to provide support while removing the mounting bolts in the following steps.
- 9. For SmartPlate model SP150, remove the two support brackets at the rear of the heat exchanger.
- 10. Use a ratchet with a 9/16" socket through the hand holes in the sides of the heat exchanger mounting bracket and a 9/16" wrench on the outside to remove the four (4) bolts, washers and nuts secure the heat exchanger to the Support Frame.

WARNING!

THE SINGLE-WALL HEAT EXCHANGER CAN WEIGH UP TO 300 POUNDS, DEPENDING ON THE SMARTPLATE MODEL. THEREFORE, USE EXTREME CARE WHEN REMOVING IT FROM THE MOUNTING BRACKET.


- 11. Carefully pull the heat exchanger away from the mounting bracket. It may be necessary to jiggle it to separate the grooved pipes from the Victaulic couplings.
- 12. To replace the heat exchanger with a new assembly, simply reverse the previous steps. Support the replacement heat exchanger and ensure it is properly aligned when installing the bolts squarely in the holes of the Support Frame. Tighten the bolts and all four Victaulic couplings.

SP-100Phone: 800-526-028807/14/2017Cooke Industries - Phone: +64 9 579 2185Email: sales@cookeindustries.co.nzWeb: www.cookeindustries.co.nz

CHAPTER 8 - CORRECTIVE MAINTENANCE

SECTION II SMARTPLATE DOUBLE-WALL HEAT EXCHANGER MODELS

8.5 DOUBLE-WALL HEAT EXCHANGER MAINTENANCE

The maintenance procedures for SmartPlate Double-Wall models (Figure 8-5) include procedures for:

- Cleaning (in-place or by disassembly)
- Opening/closing heat exchanger and removal/replacement of plate
- Replacement of gaskets
- Heat exchanger replacement

The procedures listed above are provided in sections 8.6 through 8.9.

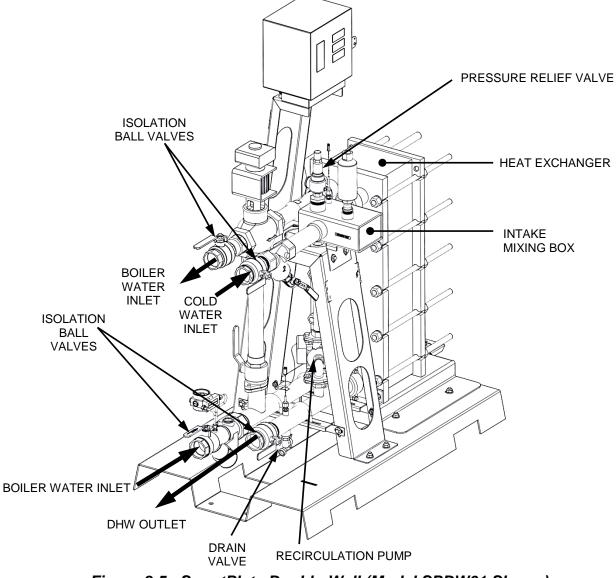
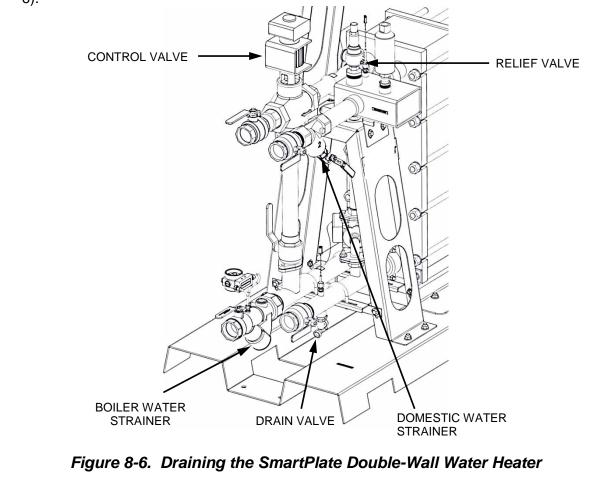


Figure 8-5. SmartPlate Double-Wall (Model SPDW61 Shown)

8.6 DOUBLE-WALL HEAT EXCHANGER CLEANING

The Double-Wall heat exchanger can be cleaned in-place by circulating cleaning agents through the unit, or by disassembly.

8.6.1 HEAT EXCHANGER CLEANING AND DE-SCALING (IN-PLACE METHOD)


If the heat exchanger <u>is not</u> encrusted with hardened scale deposits, it can normally be cleaned by circulating cleaning agents (AERCO HydroSkrub or equivalent) through the assembly. Perform the procedures specified in Section I, section 8.3 of this chapter.

8.6.2 HEAT EXCHANGER CLEANING BY DISASSEMBLY

If the heat exchanger is encrusted with hardened scale or sediment, the Water Heater will have to be drained and the Double-Wall heat exchanger opened as follows:

HEAT EXCHANGER CLEANING BY DISASSEMBLY Instructions

- 1. Set the POWER Switch on the ECS/SP Control Box to the OFF position to stop the Recirculation Pump.
- 2. Close all four Water Heater Isolation Ball Valves (see Figure 8-5, above).
- Connect a hose to the Strainer on the Boiler Water side of the piping assembly (Figure 8-6).

HEAT EXCHANGER CLEANING BY DISASSEMBLY Instructions

- 4. Open the valve on the Strainer and drain the boiler water from the unit. It will be necessary to loosen a Victaulic coupling by the heat exchanger to allow air into the pipe during draining.
- 5. Next, connect a hose to the Drain Valve on the DHW Side of the piping assembly. Open the Relief Valve to allow air into the pipe during draining
- 6. Open the Drain Valve to drain the domestic water from the unit.
- 7. After the boiler water and domestic water have been drained from the unit, close the Relief Valve opened in step 5 and tighten the Victaulic coupling loosened in step 4.
- 8. To prevent possible damage, ensure that all of the following precautions are observed:
 - Under no circumstances should hydrochloric acid be used with STAINLESS STEEL PLATES.
 - Water of more than 300 ppm chlorine may not be used in the preparation of cleaning solutions.
 - It is very important that carrying bars and support columns in aluminum are protected against chemicals.
 - Do NOT use brushes with carbon steel bristles or steel wool. A fiber type brush is recommended. As a last resort, use a brush of similar material to the thermal plate. Be careful not to scratch the plates or damage gaskets if they are to be reused.
 - After brushing, rinse each plate with water.
 - For better sealing, wipe all gaskets dry.

CAUTION!

THE FOLLOWING SOLVENTS SHOULD NOT BE USED IN CONTACT WITH GASKETS:

- Ketones (e.g. Acetone, Methyletylketone, Methylisobutylketone
- Esters (e.g. Ethyl acetate, Butyl acetate)
- Halogenated hydrocarbons (e.g. Chlorothene, Carbon Tetrachloride, Freons)
- Aromatics (e.g. Benzene, Toluene)

WARNING!

CARE MUST BE EXERCISED WHEN HANDLING CERTAIN FLUIDS. FOLLOW MANUFACTURER'S INSTRUCTIONS. USE EYE AND SKIN PROTECTION. WEAR A RESPIRATOR WHEN REQUIRED.

- 9. To open the Double-Wall heat exchanger and remove plates, refer to the procedures in sections 8.7.1 and 8.7.2.
- 10. Table 8-2 lists the recommended cleaning methods for the type of heat exchanger fouling encountered.

CHAPTER 8 - CORRECTIVE MAINTENANCE

HEAT EXCHANGER CLEANING BY DISASSEMBLY Instructions

TYPE OF FOULING	CAUSE CLEANING METHOD		CAUSE CLEANING METHOD		CLEANING METHOD CLEANING		
Incrustation Scaling (Lime Deposits)	Calcium Carbonate, Calcium Sulphate, Silicates	 Soft brush & running water NOTE: Avoid Gasket Damage High pressure hose. Chemical cleaning 	Nitric Acid Sulfamic Acid Citric Acid Phosphoric Acid Complex Agents (EDTA, NTA) Sodium Poly- phosphates	Maximum concentration: 4% Max. Temp: 140°F			
Sediment	Corrosion Products Metal Oxides Silt Alumina	 Soft brush & running water NOTE: Avoid Gasket Damage High pressure hose. Chemical cleaning Addition of surfactants can improve cleaning effect 	Nitric Acid Sulfamic Acid Citric Acid Phosphoric Acid Complex Agents (EDTA, NTA) Sodium Poly- phosphates	Maximum concentration: 8% Max. Temp: 140°F			

11. Upon completion of the cleaning process, reinstall all plates and gaskets and close the heat exchanger using the procedure in section 8.7.3.

8.7 DOUBLE-WALL HEAT EXCHANGER OPENING AND CLOSING

The following sections provide the instructions to open the Double-Wall heat exchanger, remove/replace channel plates and close the heat exchanger.

WARNING!

THE UNIT MUST BE SHUT DOWN AND DRAINED PRIOR TO PERFORMING THE PROCEDURES DESCRIBED IN SECTIONS 8.7.1 THROUGH 8.7.3 WHICH FOLLOW.

8.7.1 OPENING HEAT EXCHANGER

Perform the following steps to shut down, drain and open the Double-Wall Heat exchanger:

OPENING HEAT EXCHANGER Instructions

- 1. Ensure that the Water Heater has been shut down and drained using the procedures in section 8.6.1, steps 1 through 7.
- 2. If the Heat exchanger is hot (over 100°F), allow it to cool sufficiently before proceeding.
- 3. Remove the protective splash guard cover from the Double-Wall heat exchanger.
- 4. Inspect the sliding surfaces of the upper and lower support bars (Figure 8-7) and wipe clean.

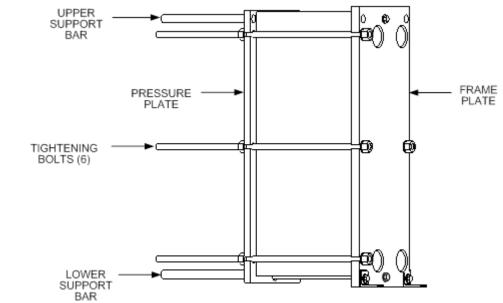
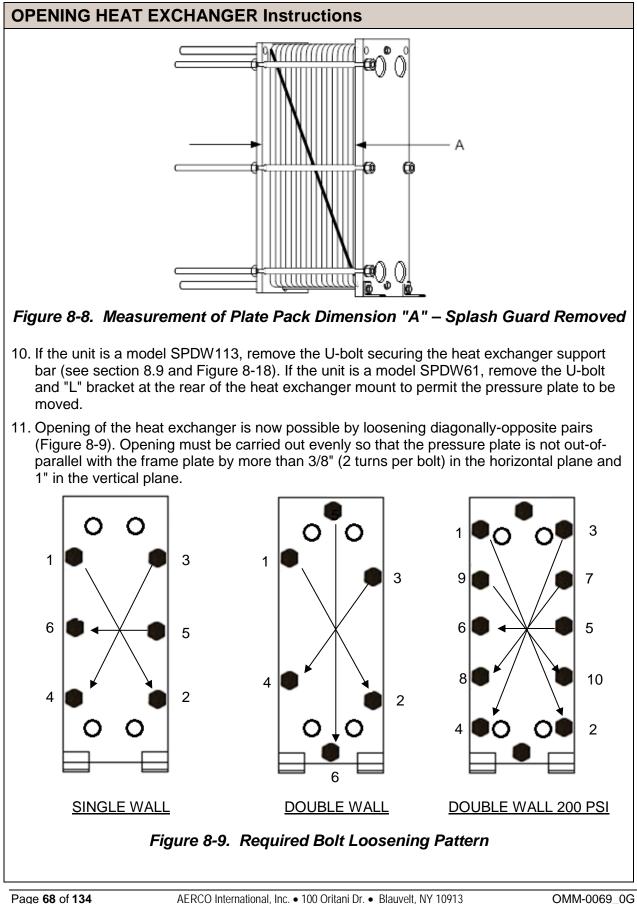


Figure 8-7. Double-Wall Heat Exchanger

- 5. Brush the threads of the tightening bolts clean using a steel wire brush.
- 6. Lubricate the threads of the tightening bolts with a thin layer of grease, such as molybdenum disulfide or equivalent.
- 7. Remove the protective splash guard to provide access to the plate pack assembly (see Figure 8-8, below).
- 8. Mark the plate pack assembly with a diagonal line as shown in Figure 8-8 or number the plates in sequence.


IMPORTANT!

Measurement of tightening dimensions is critical to reassembly. Carefully measure and record before loosening the tightening bolts.

9. Measure and record the lateral dimension "A" between the frame plate and pressure plate as shown in Figure 8-8.

CHAPTER 8 - CORRECTIVE MAINTENANCE

07/14/2017

Cooke Industries - Phone: +64 9 579 2185 Email: sales@cookeindustries.co.nz Web: www.cookeindustries.co.nz

OPENING HEAT EXCHANGER Instructions

12. With the tightening bolts removed, the pressure plate can be slid back (Figure 8-10) and channel heat transfer plates can also be slid back for inspection or cleaning.

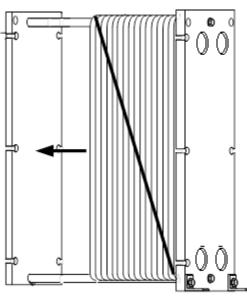


Figure 8-10. Heat Exchanger with Pressure Plate Slid Back

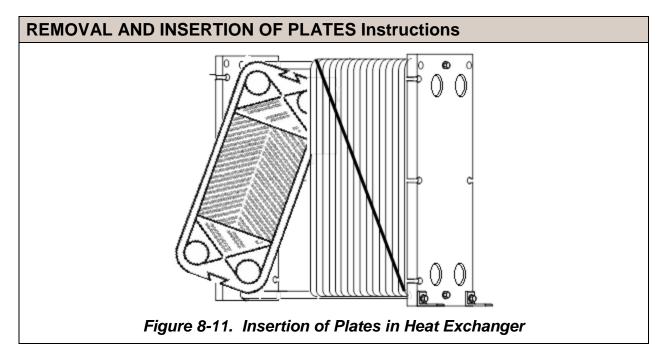
8.7.2 REMOVAL AND INSERTION OF PLATES

To remove and insert the channel (heat transfer plates), proceed as follows:

WARNING!

TO AVOID HAND INJURIES WHEN HANDLING PLATES, USE PROTECTIVE GLOVES.

NOTE:


If defective gaskets are detected during removal of plates, they must be replaced using the procedures in section 8.8.

REMOVAL AND INSERTION OF PLATES Instructions

- 1. Push the pressure plate back away from the plate pack.
- 2. When removing the plates, number or stack them in sequence.
- 3. Hang the plates with their backs towards the pressure plate (the side without gasket), unless otherwise specified.
- 4. Always consult the plate pack numbering or markings to insure the proper plate sequence.
- 5. Install plates one at a time and push them towards the frame plate (Figure 8-11).

CHAPTER 8 - CORRECTIVE MAINTENANCE

8.7.3 CLOSING HEAT EXCHANGER

Closing the heat exchanger is accomplished as follows:

CLOSING HEAT EXCHANGER Instructions

- 1. Check that all the sealing surfaces (i.e. surfaces in contact with the heat transfer medium) are clean.
- 2. Check that connection fittings are in position and are in good condition.
- 3. Clean and lubricate the sliding surfaces of the upper and lower support bars.
- 4. If the plates are correctly assembled, the edges form a ["]honey comb" pattern as shown below.

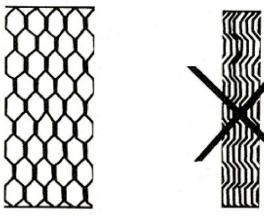


Figure 8-12. Heat Exchanger Plates

5. Slide the pressure plate forward and press the plates together (Figure 8-13). If the plate pack was previously marked on the outside (Figure 8-8), check to ensure that the plate arrangement agrees with the markings.

CHAPTER 8 – CORRECTIVE MAINTENANCE

CHAPTER 8 - CORRECTIVE MAINTENANCE

CLOSING HEAT EXCHANGER Instructions

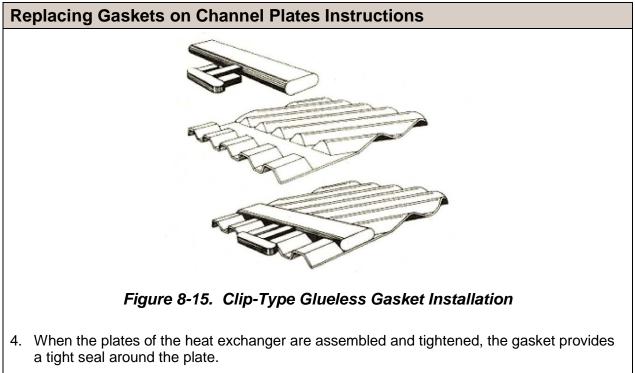
13. Perform the following final checks:

- a) Inspect the washers.
- b) When fully tightened. The bolts should all be equally tensioned
- c) The difference between the plate pack lengths measured at adjacent bolts should not exceed: 0.079 inches.
- d) The plate pack length at all bolts must not differ more than 1%.
- e) If the unit does not seal fully, it can be tightened to give dimension "A" 1%. However, the maximum tightening torque must not be exceeded.

14. Install the protective splash guard.

8.8 DOUBLE-WALL HEAT EXCHANGER GASKET REPLACEMENT

All sizes of the Double-Wall heat exchanger utilize "Clip-Type" glueless gaskets. The following sections provide the instructions to replace gaskets on channel plates and on the end plate (first plate against frame plate)

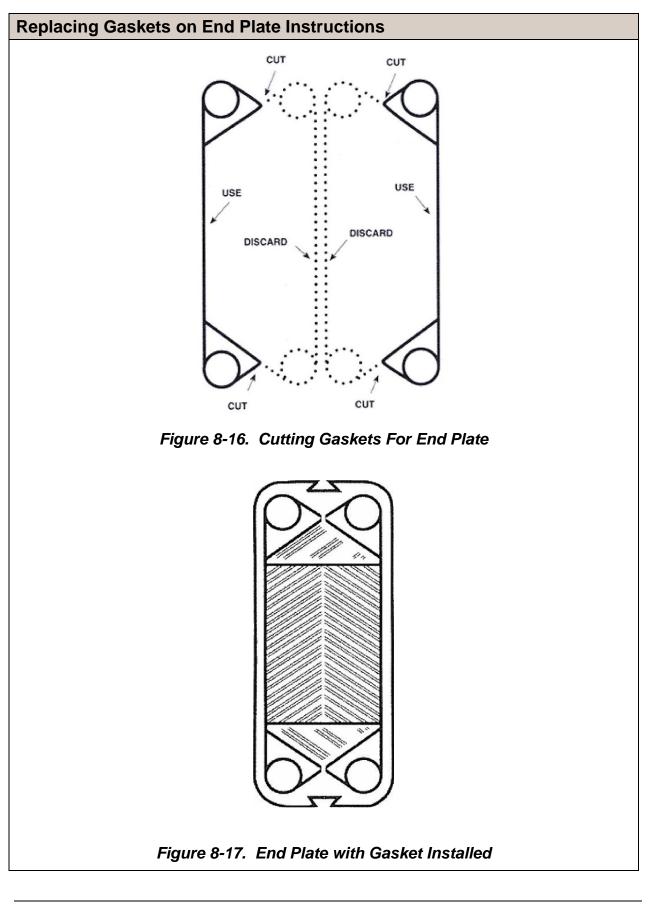

Refer to the appropriate procedures in sections 8.7.1 and 8.7.2 to open the heat exchanger and remove the required plates. Following gasket replacement, close the heat exchanger using the procedures in section 8.7.3.

8.8.1 REPLACING GASKETS ON CHANNEL PLATES

Replacing Gaskets on Channel Plates Instructions

- 1. Peel old gasket off of plate making sure all parts of gasket are removed.
- 2. Wipe gasket groove clean making certain that no foreign material remains that would cause gasket to seat unevenly.
- 3. Clip-type glueless gaskets (Figure 8-15) are attached to the plate using the prongs which slip under the edge of the plate to hold the gasket securely in the gasket groove. The prongs are situated at regular intervals around the perimeter of the plate.

5. Before closing the plate pack, check to ensure that the gasket prongs are in the correct position.


8.8.2 REPLACING GASKETS ON END PLATE (FIRST PLATE AGAINST FRAME PLATE)

Replacing Gaskets on End Plate Instructions

- 1. Obtain two standard plate gaskets (P/N 81128 for DW units).
- 2. Cut the gaskets as indicated in Figure 8-16, below.
- 3. Attach gasket to plate as indicated in Figure 8-17, below.

CHAPTER 8 - CORRECTIVE MAINTENANCE

8.9 DOUBLE-WALL HEAT EXCHANGER REPLACEMENT

The heat exchanger used in each SmartPlate Double-Wall model is removed and replaced using the following basic procedure:

DOUBLE-WALL HEAT EXCHANGER REPLACEMENT Instructions

- 1. Turn OFF the POWER Switch on the side of the ECS/SP Control Box.
- 2. Slowly close all four of the Isolation Ball Valves (Figure 8-5).
- Connect a hose to the Strainer on the Boiler Water side of the piping assembly (Figure 8-6). Open the valve on the Strainer and drain the boiler water from the unit. It will be necessary to loosen a Victaulic coupling by the heat exchanger to allow air into the pipe during draining.
- 4. Next, connect a hose the Drain Valve on the DHW Side of the piping assembly. Open the Relief Valve to allow air into the pipe during draining.
- 5. After the boiler water and domestic water have been drained from the unit, close the Relief Valve opened in step 4 and proceed to step 6 to remove the installed heat exchanger.
- Using a ratchet wrench with an extension and a 3/4" deep socket, remove, the four (4) Victaulic couplings (Figure 8-19). Two (2) couplings are located on the Domestic Water Side and two (2) are located on the Boiler Water Side.
- 7. Next, remove the two (2) bolts securing the front "L" brackets on the heat exchanger to the heat exchanger mount (Figure 8-18).

CHAPTER 8 - CORRECTIVE MAINTENANCE

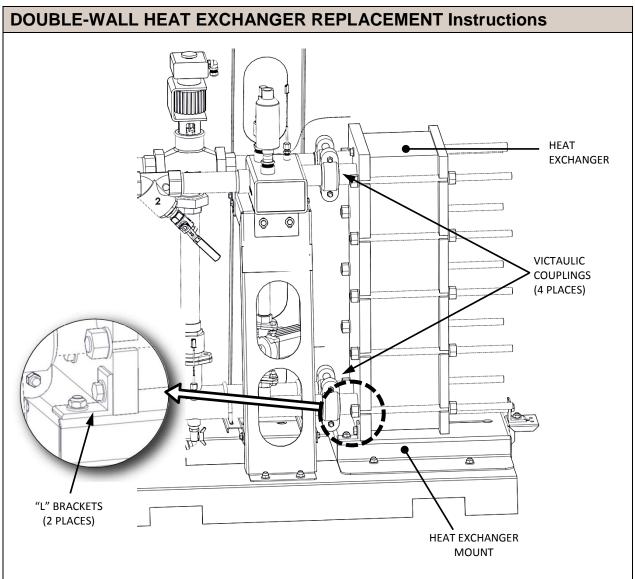
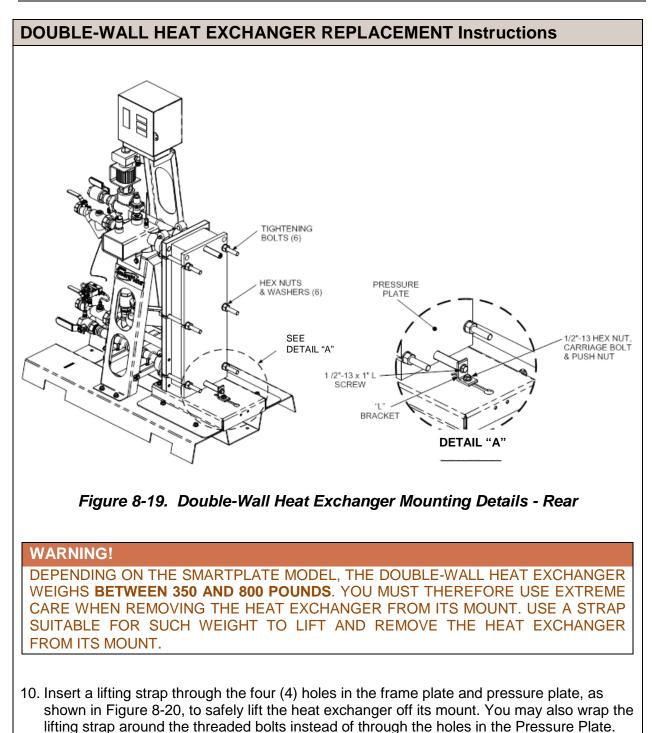
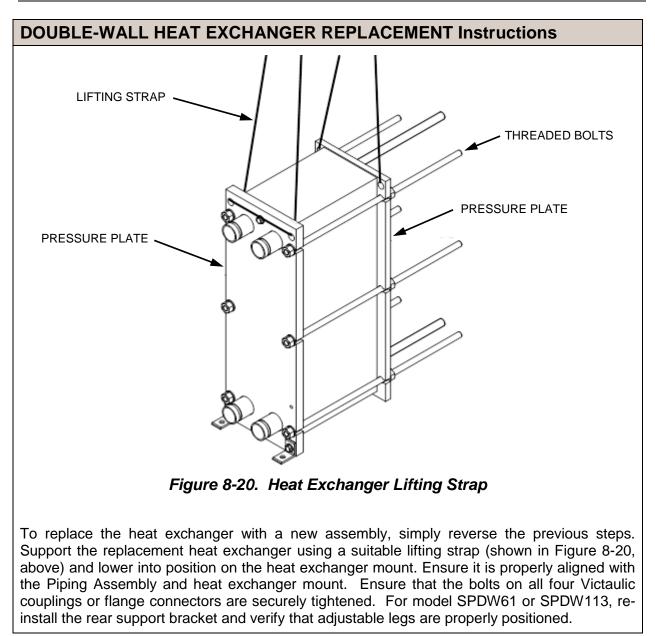



Figure 8-18. Domestic Water Side - Double-Wall Partial View

- 8. For larger SmartPlate units (models SPDW61, SPDW113) remove the U-bolt securing the heat exchanger support bar (not shown above) and, if there is an "L" bracket, remove it.
- 9. For smaller SmartPlate units (models SPDW23, SPDW32 SPDW42) use a 3/4" socket wrench to remove the horizontal hex head screw and washer shown in Figure 8-19. Also, remove the hex nut securing the "L" bracket to the heat exchanger mount.



CHAPTER 8 - CORRECTIVE MAINTENANCE

CHAPTER 8 – CORRECTIVE MAINTENANCE

SECTION III SMARTPLATE WETTED COMPONENTS - ALL MODELS

8.10 CONTROL VALVE ELECTRONIC MODULE REPLACEMENT AND VALVE REMOVAL

The only replaceable item on the 3-Way Control Valve (Siemens MXG-461) is the Electronics Module located at the top of the Valve (Figure 8-21). The procedures for removing this Module or replacing the complete Control Valve are provided in sections 8.10.1 and 8.10.2, below.

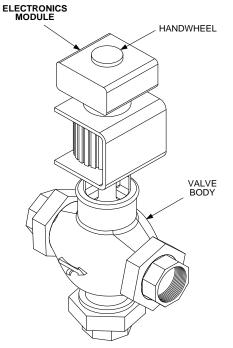


Figure 8-21. Control Valve (Siemens MXG-461)

8.10.1 ELECTRONICS MODULE REPLACEMENT

To remove and replace the Control Valve Electronics Module:

ELECTRONICS MODULE REPLACEMENT Instructions

- 1. Turn OFF the POWER Switch on the side of the ECS/SP Control Box.
- 2. Loosen the two (2) captive screws securing the Electronics Module cover (Figure 8-22).
- 3. Remove the Module cover to access the wiring terminals (Figure 8-23). Disconnect and tag the power and control signal wire leads from the Module terminals.
- 4. Using a 3 mm Allen key, loosen the three (3) socket head screws securing the blue Electronics Module to the black Valve Head. These socket head screws are recessed and the Allen key must be inserted into the holes shown in Figure 8-23 to engage the screw heads.
- 5. Pull straight up to unplug the Module from the Valve Head.

ELECTRONICS MODULE REPLACEMENT Instructions

- 6. Install the replacement Electronics Module on the Valve Head and secure it with the three socket head screws removed in step 4.
- 7. Refer to Figure 8-23 and ensure that the three (3) DIP switches on the replacement Module are all in the OFF (down) position.
- 8. Reconnect the power and control signal wire leads to the Electronics Module.
- 9. Turn ON the POWER Switch on the side of the ECS/SP Control Box.
- 10. Recalibrate the Control Valve using the procedures in Chapter 4, section 4.2.1.
- 11. Replace the cover on the Electronics Module after the Valve has been successfully calibrated.
- 12. Return the unit to service.

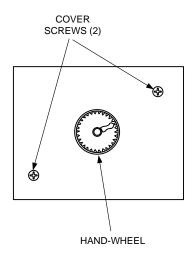
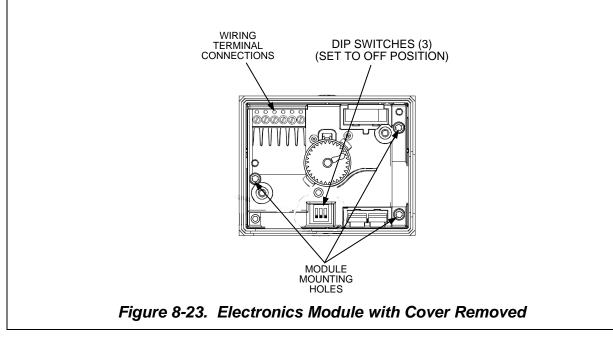
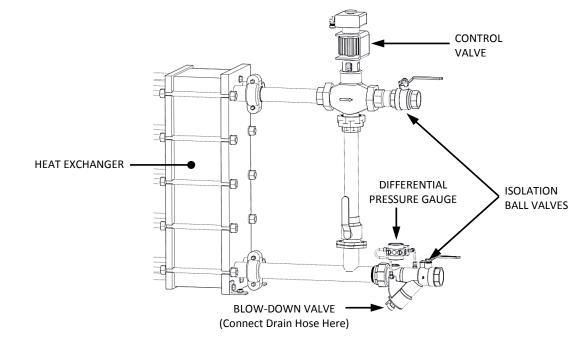



Figure 8-22. Control Valve Electronics Module Cover – Top View

CHAPTER 8 – CORRECTIVE MAINTENANCE



8.10.2 CONTROL VALVE REPLACEMENT

To remove the complete Control Valve Assembly from the SmartPlate Water Heater:

CONTROL VALVE REPLACEMENT Instructions

- 1. Turn the POWER Switch on the side of the ECS/SP Control Box to **OFF**.
- 2. Loosen the two (2) captive screws securing the Electronics Module cover (Figure 8-22).
- 3. Remove the Module cover to access the wiring terminals (Figure 8-23). Disconnect and tag the power and control signal wire leads from the Module terminals.
- 4. Connect a hose to the Blow-Down Valve/Drain on the lower pipe Strainer (Figure 8-24).
- 5. Close both Isolation Ball Valves on the Boiler Water pipe side of the unit.
- 6. Open the Blow-Down/Drain Valve on the Strainer.

Figure 8-24. Boiler Water Piping Components

- 7. While supporting the Control Valve from above, loosen all three (3) unions securing the Valve.
- 8. Inspect the union seals and seats.
- 9. Install the replacement Control Valve and ensure that the seals are not pinched. Handtighten the unions.

CAUTION!

Two (2) pipe wrenches MUST be used when tightening the Valve unions to prevent pipe rotation and avoid leaks

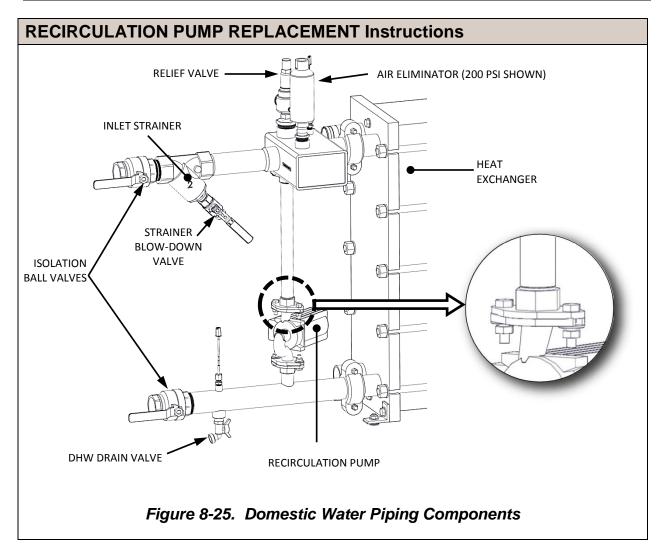
10. Using two (2) pipe wrenches, secure the Control Valve unions to the Boiler Water piping.

11. Refer to Figure 8-23 and ensure that the three (3) DIP switches on the Electronics Module of the replacement Valve are all in the OFF (down) position.

CONTROL VALVE REPLACEMENT Instructions

- 12. Reconnect the power and control signal wire leads to the Electronics Module of the replacement Control Valve.
- 13. Turn ON the POWER Switch on the side of the ECS/SP Control Box.
- 14. Recalibrate the Control Valve using the procedures in Chapter 4, section 4.2.1.
- 15. Replace the cover on the Electronics Module after the Valve has been successfully calibrated.
- 16. Return the unit to service.

8.11 RECIRCULATION PUMP REPLACEMENT


The SmartPlate Recirculation Pump is a wet rotor, continuous-duty Pump which has an expected service life of 5 years. The Pump is located in the DHW side of the piping assembly (Figure 8-25) to continuously circulate domestic water through the unit, even when there is no DHW demand. If the Pump fails, it must be replaced to ensure proper Water Heater operation. Replacement is accomplished as follows:

RECIRCULATION PUMP REPLACEMENT Instructions

- 1. Turn **OFF** the external power circuit breaker to the Water Heater and also turn **OFF** the POWER Switch on the side of the ECS/SP Control Box.
- 2. Connect a hose to the DHW Drain Valve (Figure 8-25).
- 3. Close both Isolation Ball Valves on the DHW piping.
- 4. Open the DHW Drain Valve.
- 5. Open the Relief Valve to allow air to enter the piping while draining.
- 6. Disconnect the power leads from the Pump Head.
- 7. Remove the bolts on the Pump flanges and slide the Pump out from between the flanges.
- 8. When installing the replacement Recirculation Pump, ensure that the seals are in place and are not pinched.
- 9. Reinstall the flange bolts and reconnect the power leads to the Pump Head.
- 10. Close the Relief Valve opened in step 5.
- 11. Close the DHW Drain Valve that was opened in step 4.
- 12. Connect a hose to the Blow-Down Valve on the Inlet Strainer. Open this Blow-Down Valve on the Strainer to vent air during the filling process.
- 13. Open the lower Isolation Ball Valve (DHW Outlet).
- 14. Next, close the Blow-Down Valve on the Inlet Strainer and open the upper Isolation Ball Valve (DHW Inlet).
- 15. Reconnect the power leads to replacement Recirculation Pump Head.
- 16. Turn ON the external circuit breaker and set the POWER Switch on the side of the ECS/SP Control Box to the ON position to return the unit to service use.

CHAPTER 8 - CORRECTIVE MAINTENANCE

8.12 STRAINERS

All SmartPlate Water Heater models utilize Combination Strainers and Ball Valve on the boiler side, and a strainer on the DHW side to prevent fouling of the heat exchanger by trapping foreign material before it enters the unit. In addition, SmartPlate provides a Differential Pressure Gauge on the Boiler Water Inlet to aid in determining when to blow-down the Strainer. If this Gauge becomes inoperable, it should be replaced using the following procedure.

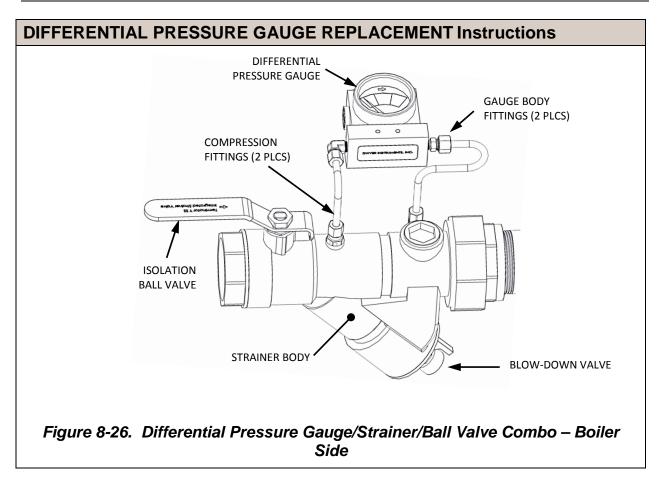
NOTE:

If normal maintenance does not clear the Water Heater flow path, it will be necessary to remove and manually clean the screens in the Boiler Water and DHW piping as follows:

- a. Remove Strainer end cap and remove screen.
- b. Hose and wash off screen.
- c. Reinstall screen and replace Strainer end cap.

DIFFERENTIAL PRESSURE GAUGE REPLACEMENT Instructions

- 1. Close both Isolation Ball Valves in the Boiler Water piping (Figure 8-24).
- 2. Connect a hose to the Blow-Down/Drain Valve at the lower Strainer and open it to drain the piping. It may be necessary to temporarily loosen a union on the Control Valve to allow air into the piping.
- 3. Refer to Figure 8-26 and loosen the two compression fitting nuts on the Differential Pressure Gauge tubes which are inserted into the brass Strainer body.
- 4. Pull and wiggle the tubes and Gauge and lift the assembly straight upward to remove it from the Strainer.
- 5. Next, loosen the nuts on the Gauge body fittings and extract the tubes for use on the replacement Differential Pressure Gauge.


NOTE:

The tube fittings are pass-thru type fittings that allow the tube to slide through the fitting without hitting a stop. Prior to installation, make sure that the replacement Gauge has the same type of fittings.

- 6. Install the tubes on the replacement Differential Pressure Gauge.
- 7. Insert the free ends of the tubes into the Strainer body and tighten the compression fittings. DO NOT over-tighten the compression fittings.
- 8. Tighten the Control Valve union that was loosened in step 2.
- 9. Close the Blow-Down Drain Valve and open both Isolation Ball Valves (Figure 8-24).
- 10. Place the unit back in service and check for leaks. If the Strainer is clean and the flow is within specification for the SmartPlate Water Heater model, the pointer on the Differential Pressure Gauge should be in the Green zone on the dial.

CHAPTER 8 - CORRECTIVE MAINTENANCE

SECTION IV SMARTPLATE ELECTRONIC CONTROL SYSTEM (ECS/SP)

WARNING!

TURN OFF THE CONTROL BOX POWER SWITCH AND DISCONNECT AC POWER PRIOR TO PERFORMING ANY CORRECTIVE MAINTENANCE PROCEDURES IN THE FOLLOWING SECTIONS. FAILURE TO OBSERVE THIS WARNING MAY RESULT IN SERIOUS PERSONAL INJURY.

8.13 ECS/SP CONTROL BOX ASSEMBLY AND COMPONENTS

Corrective maintenance for the Control Box and internally-mounted components consist of removing and replacing the following items:

- Control Box Assembly
- Temperature Controller
- Over-Temperature Switch
- Temperature Indicators
- 24 VAC Step-Down Transformer

The following sections reference figures in previous chapters as well as figures in this chapter. Refer to the applicable figures as necessary when performing the replacement procedures which follow.

8.14 CONTROL BOX ASSEMBLY REPLACEMENT

If necessary, the complete ECS/SP Control Box Assembly can be removed and replaced as follows:

CONTROL BOX ASSEMBLY REPLACEMENT Instructions

- 1. Loosen the captive screws on the Control Box door and the recessed panel (Figures 2-3, 2-4).
- 2. Open the swing-down recessed panel. Locate and disconnect the Line, Neutral and Ground leads connected to Terminal Block TB-2 on the bottom interior surface of the Control Box chassis (Figure 2-5).
- 3. Refer to Figures 1-1 and 1-2 and disconnect the Control Box cables from the following devices:
 - a) Disconnect Control Valve (Siemens MXG-461) power and signal leads from terminal strip TB-1.
 - b) Disconnect the external AC power leads from terminal strip TB-2.
 - c) Disconnect the Recirculation Pump power leads from terminal strip TB-2.
 - d) Disconnect the Mixed Inlet Temp cable from the Mixed Inlet Temp Sensor on the top of the unit's Mixing Box.
 - e) Disconnect the Hot Water Outlet Temp cable from the Dual Outlet Temp Sensor at the unit's DHW outlet.
 - f) Disconnect BOILER TC IN and TC OUT leads (2-pin Molex connectors) connected to the heating fluid (boiler water) inlet and outlet Temperature Sensors.

CONTROL BOX ASSEMBLY REPLACEMENT Instructions

- 4. After all Control Box cables have been disconnected, remove the four mounting screws securing the bottom of the Control Box to the mounting bracket. Completely remove the Control Box from the unit.
- 5. Control Box replacement is accomplished by reversing the previous steps.

8.15 TEMPERATURE CONTROLLER REPLACEMENT

The Temperature Controller is located on the recessed panel behind the Control Box door as shown in Figure 4-4. Removal and replacement is accomplished as follows:

TEMPERATURE CONTROLLER REPLACEMENT Instructions

- 1. Switch power off and open the Control Box door to access the Temperature Controller.
- 2. The Temperature Controller is installed in a sleeve as shown in Figure 8-27. To unplug and remove the Controller from its sleeve, simply pry the latching ears outward and pull the Controller out of the panel.
- 3. To install a replacement Temperature Controller, simply slide it into the front panel sleeve until the latching ears click into place. Following replacement, switch power on adjust the setpoint temperature to the required value using the Adjustment procedures in Chapter 4.
- 4. Close and secure Control Box front door.

8.16 OVER-TEMPERATURE SWITCH AND TEMPERATURE INDICATORS

The Over-Temperature Switch and Temperature Indicators are actually identical devices, however they perform different functions. As the name implies, the Over-Temperature Switch, performs a switching function and generates an alarm when the preset temperature limit is exceeded. However, the Temperature Indicators are Indicator-Only devices and are not factory wired to perform any switching functions. The locations of the Over-Temperature Switch and Temperature Indicator are shown in Figure 4-4. Removal and replacement for each device are performed using the following identical steps:

Figure 8-28. Over-Temperature Switch & Temperature Indicator

OVER-TEMPERATURE SWITCH and TEMPERATURE INDICATOR REPLACEMENT Instructions

- 1. Open the Control Box door to locate the Switch or Indicator to be replaced.
- 2. Loosen the captive screw on the recessed panel behind the door. Open the swing-down panel to access the Switch/Indicator wiring connections and panel retaining clips.
- 3. Remove the Switch/Indicator rear cover and loosen the terminal wiring connection screws. Disconnect the wires.
- 4. To remove the Over-temperature Switch assembly, push in tab of each of two side retaining clips (Figure 8-29), slide toward rear and remove.
- 5. Insert the replacement Over-Temperature Switch or Temperature Indicator into the panel cutout.
- 6. Slide the removable retaining clip onto the replacement Switch/Indicator from the rear. Push the retaining clip forward until the Switch/Indicator is firmly secured in the panel cutout.
- 7. Reconnect the wiring to the rear of the unit and tighten the terminal screws. Replace the terminal cover.

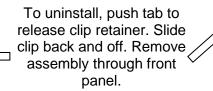


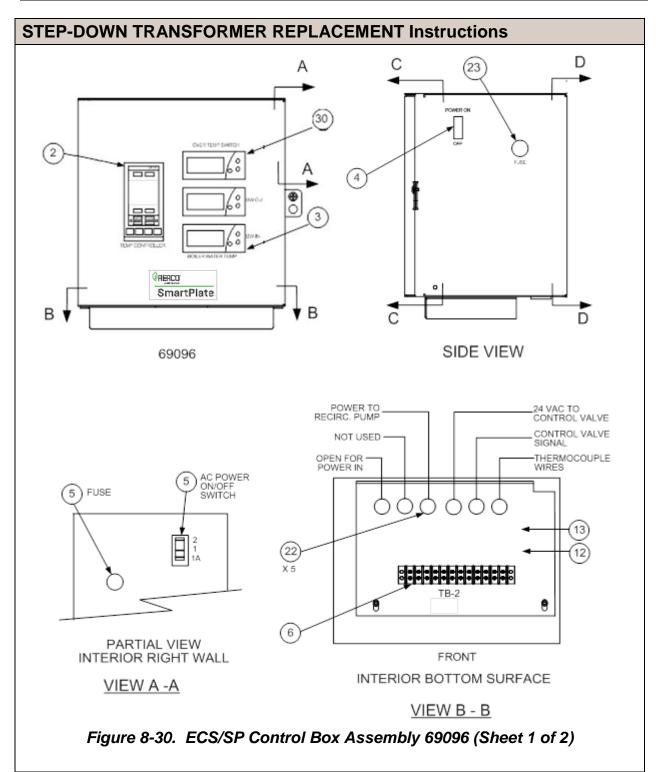
Figure 8-29. Removing Over-Temperature Switch Assembly

Cooke Industries - Phone: +64 9 579 2185 Email: sales@cookeindustries.co.nz Web: www.cookeindustries.co.nz

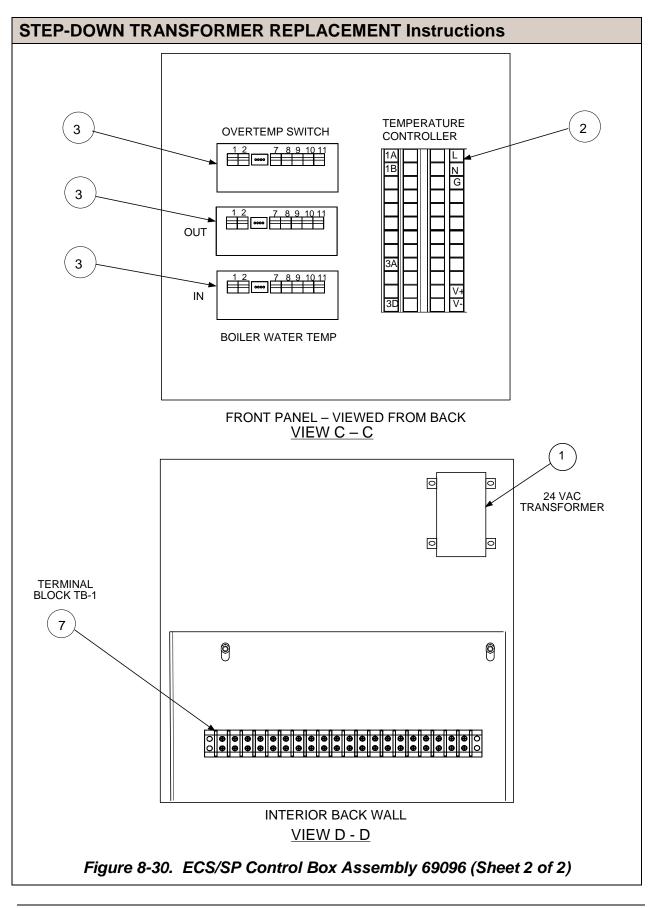
OVER-TEMPERATURE SWITCH and TEMPERATURE INDICATOR REPLACEMENT Instructions

- 8. If the replaced unit is an Over-Temperature switch, set the desired over-temperature alarm limit using the adjustment procedures in Chapter 4, section 4.2.4.
- 9. Following adjustment (if necessary), raise and secure the swing-down panel. Close and secure the Control Box door.

8.17 24 VAC STEP-DOWN TRANSFORMER REPLACEMENT


The 24 VAC Transformer is mounted on the back interior wall of the Control Box (Figure 8-30, View D-D). Replacement is accomplished as follows:

STEP-DOWN TRANSFORMER REPLACEMENT Instructions


- 1. Open the Control Box door and loosen the captive screw on the recessed panel behind the door.
- 2. Open the swing-down panel and locate the 24 VAC Transformer on the back interior wall of the Control Box (Figure 8-30, sheet 2).
- 3. Disconnect the Transformer wire leads from terminal strips TB-1 and TB-2.
- 4. Remove the mounting hardware and 24 VAC Transformer from the Control Box.
- 5. Replacement is accomplished by reversing the previous steps.

CHAPTER 8 - CORRECTIVE MAINTENANCE

CHAPTER 8 – CORRECTIVE MAINTENANCE

STEP-DOWN TRANSFORMER REPLACEMENT Instructions

tem	Qty.	Part No.	Description
1	1	65082	TRANSFORMER, X075CBA, 120/240 TO 24 VAC
2	1	64008	TEMPERATURE INDICATOR CONTROLLER
3	2	64056	OVER-TEMP SWITCH/TEMP INDICATOR
4	3	60003	ON/OFF SWITCH
6	1	65087	TERMINAL BLOCK, 12-POSITION (TB-2)
7	1	65008	TERMINAL BLOCK, 20-POSITION (TB-1)
12	1	63047	AC WIRE HARNESS
13	1	63048	CONTROL WIRING HARNESS
15	1	63009-3	EXTERNAL HARNESS
22	5	62003	PLUG
23	1	65094-1	FUSE
30	1	60014	OVER-TEMPERATURE SWITCH

(This page left intentionally blank)

APPENDIX A

MODBUS CONTROL AND COMMUNICATION

TEMPERATURE CONTROLLER (Eurotherm 2408) PROCEDURES

MODBUS COMMUNICATION INFORMATION & PROCESS / DIAGNOSTIC ALARM MESSAGES

A.1 <u>TEMPERATURE CONTROLLER (EUROTHERM 2408) PROCEDURES</u>

The following sections provide the procedures to add a Modbus Communication board to the Temperature Controller and change communication addresses.

A.1.1 Adding a Communication Board to the Temperature Controller

Parts Needed:

- a. ECS/SP Control Box Assembly, P/N: 69096-TAB]
- b. Temperature Indicating Controller, P/N: 64008
- c. Communications Board, P/N: 64009-TAB

ADDING A COMMUNICATION BOARD Instructions

- 1. Turn off power to ECS/SP Control Box Assembly
- 2. Slide out Temperature Indicating Controller (P/N: 64008) from Control Box Assembly by gently pushing the indicated latching ears to the side (See Figure A-1).

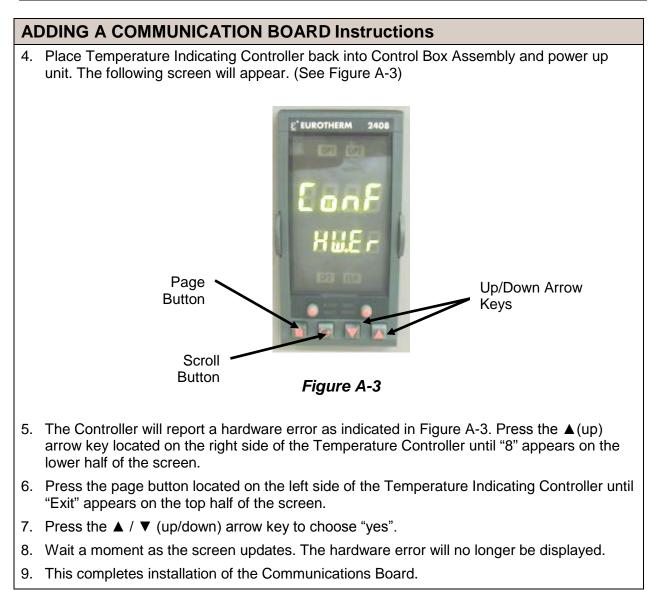
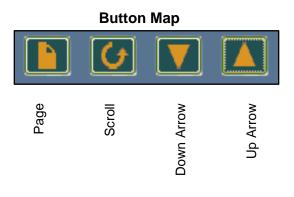


Figure A-1

 Slide Communications Board (P/N 64009-TAB) into Temperature Indicating Controller slot (COMMS 1). See Figure 2. Make sure to push Communications Board all the way in to ensure it is firmly seated in its slot.



A.1.2 Changing the Temperature Controller Communication Addresses

NOTE:

Refer to the button map at the bottom of the display, Figure A-4, for all panel navigation instructions.

The Temperature Controller address is defaulted to 1 from the factory. To change the MODBUS address, proceed as follows:

1. **Page** to the ACCS list and **Scroll** down to *codE*.

APPENDIX A – MODBUS CONTROL AND COMMUNICATION

- 2. Enter <u>24</u> using the **Up Arrow**. The number will flash and display <u>PASS</u>.
- Scroll to Goto (current value is <u>OPEr</u>) and use the Down Arrow to enter a value of <u>Full</u>. The entry confirms by flashing the lower display momentarily off and then on.

- 4. Go to the home screen by pressing the **Page** and **Scroll** buttons at the same time.
- EUROTHERISIM2408 EUROTHERISIM2408 OP1 OP1 Goto codt OPEr PASS **U** EUROTHERISIM2408 EUROTHERISIM2408 0P1 0P1 **!**4[] Goto Full 140 G G EUROTHERISIM2408 EUROTHERISIM2408 EUROTHERISIM2408 0P1 0P1 0P1 Addr Addr כשכ L, SE 18 οτυΑ G G G

- 5. Page to the *cmS* list.
- 6. **Scroll** to the *Addr* screen.
- 7. Use the **Up Arrow** to select the desired address number.

APPENDIX A - MODBUS CONTROL AND COMMUNICATION

- 8. Go to the home screen by pressing the **Page** and **Scroll** buttons at the same time.
- 9. Page to the ACCS list and change the code to anything other than 24. The codE number you enter will flash off and then on to <u>0</u> to confirm that access is now set to the OPEr level and it is safe to return to use.
- Confirm that the *Addr* is set properly by pressing the **Page** button until the cmS list is displayed. **Scroll** to *Addr*. If the value is correct you are done; if not, repeat the steps in this procedure.

A.2 MODBUS COMMUNICATION INFORMATION

NOTE:

The Eurotherm 2400 Controller supports the MODBUS RTU mode of transmission. The default settings are as follows: 9600 Baud Rate, one start bit, eight data bits, one stop bit, & no parity bit.

EUROTHERM SERIES 2400 CONTROLLER MODBUS POINTS						
MODBUS Data Address	Menu Item	Menu Item Description	Units & Range	Default/Comments	Register Type	Ref. 1 Comm. Guide
5	w.SP	Setpoint	40-205°F	140°F, Address to read value	Read Only	5-4
24	SP 1	Setpoint	40-180°F	140°F, Address to change value	Write	5-11
1	Top Value	Outlet Temp	40-205°F	Same value as front display	Read Only	5-3
133	LoGH	Peak Temp	40-205°F	Resets on Power Loss	Read Only	5-15
135	LoGA	Average Temp	40-205°F	Resets on Power Loss	Read Only	5-15
134	LoGL	Low Temp	40-205°F	Resets on Power Loss	Read Only	5-15
13 (set) 74 (status, 0 = safe 1 = alarm)	AL 1	Over Temp Alarm	40-205°F	20°F above setpoint; Alarm Type 17: Deviation High	Read Only	5-7 5-20
14 (set) 74 (status, 0 = safe 1= alarm)	AL 2 (FSH)	Full Scale High Alarm	205°F	205 ° F Alarm Type 2: Full Scale High	Read Only	5-7 5-20
258	Sbr	Feedback Sensor Break	Status: 0: Good 1: Failed	Denotes Feedback Sensor Failure/Open Circuit	Read Only	5-18
289	Li 1	Feedback Sensor Temp	40-180°F	Sensor input to controller, same as display temp.	Read Only	5-14
290	Li 2	Feed Forward Temperature	40-180°F	Sensor input to controller	Read Only	5-14
3	OP	Control Output Signal	%	Correlates to valve position	Read Only	5-4

REFERENCE DOCUMENTS:

- 1. Eurotherm 2000 Series Communications Handbook, # HA026230
- 2. Eurotherm 2404/2408 Control Setpoint Programmer Installation and Operation Handbook, # HA025132

APPENDIX A – MODBUS CONTROL AND COMMUNICATION

A.3 PROCESS & DIAGNOSTIC ALARMS

The Process and Diagnostic Alarms that can appear in the Temperature Controller display are listed in the following Tables.

PROCESS ALARMS		
DISPLAY	MEANING	
_FSL*	PV Full Scale Low Alarm.	
_FSH*	PV Full Scale High Alarm.	
_dEu*	PV Deviation Band Alarm	
_dHi*	PV Deviation High Alarm	
_dLo*	PV Deviation Low Alarm	

DIAGNOSTIC ALARMS				
DISPLAY	MEANING	WHAT TO DO`		
EE.Er	<i>Electrically Erasable Memory</i> <i>Error:</i> The value of an operator, or configuration, parameter has been corrupted.	This fault will automatically take you into Configuration level. Check all of the configuration parameters before returning to Operator level. Once in Operator level, check all of the operator parameters before resuming normal operation. If the fault persists, or occurs frequently, contact your supplier		
S.br	Sensor Break: Input sensor is unreliable or the input signal is out of range.	Check that the sensor is correctly connected		
Hw.Er	Hardware Error Indication that a module is of the wrong type, missing, or faulty.	Check to ensure that the correct items are installed. See page A-4 for procedure to clear the Hardware Error.		
no.io	No I/O None of the expected I/O items are installed	This error message normally occurs when pre-configuring a controller without installing any of the required I/O modules.		
rmt.F	Remote input failure. The remote DC input is open or shorted	Check for open or short circuit wiring on the remote DC input.		
LLLL	Out of range low reading	Check the value of the input		
нннн	Out of range high reading	Check the value of the input		
Err1	Error 1: ROM self-test fail	Return Controller for repair		

APPENDIX A – MODBUS CONTROL AND COMMUNICATION

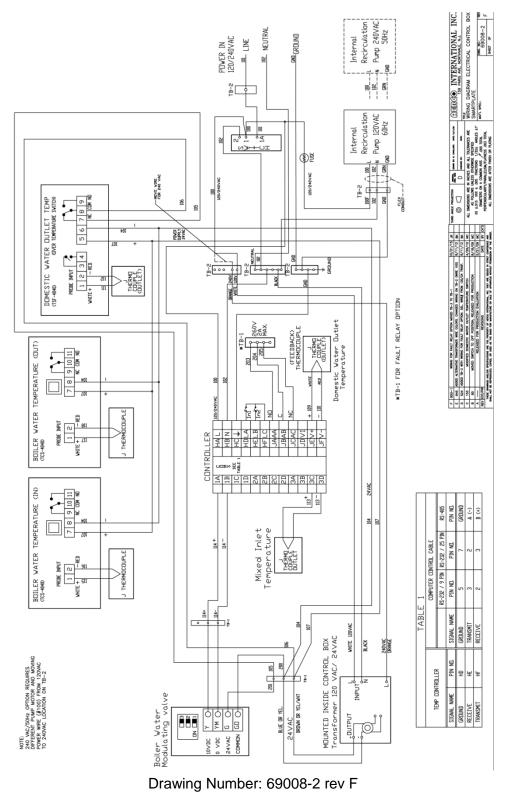
DIAGNOSTIC ALARMS				
DISPLAY	MEANING	WHAT TO DO`		
Err2	Error 2: RAM self-test fail	Return Controller for repair		
Err3	Error 3: Watchdog fail	Return Controller for repair		
Err4	Error 4: Keyboard failure. Stuck button or button was pressed during power-up	Switch power off and then on, without touching any of the controller buttons		
Err5	Error 5: Faulty internal communication	Check printed circuit board interconnections. If the fault cannot be cleared, return the controller for repair.		
Err6	Digital filter chip faulty or loose board inside controller	Return Controller for repair		
Err7	PV ID failure	Return Controller for repair		
Err8	Module 1 ID failure	Faulty or loose module, or isolation problem		
Err9	Module 2 ID failure	Faulty or loose module, or isolation problem		
ErrA	Module 3 ID failure	Faulty or loose module, or isolation problem		
dCF	DC output failure	Return Controller for repair		
OPEn	Secondary Input Missing or Disconnected	This error may result from no power to the flow meter (check for green power light on rear of meter or 0-5V flowmeter signal connections), or a disconnection of the Molex connector between feedforward sensor and the Eurotherm controller.		

A3.1. Clearing Hardware Error (Hw.Er) Display

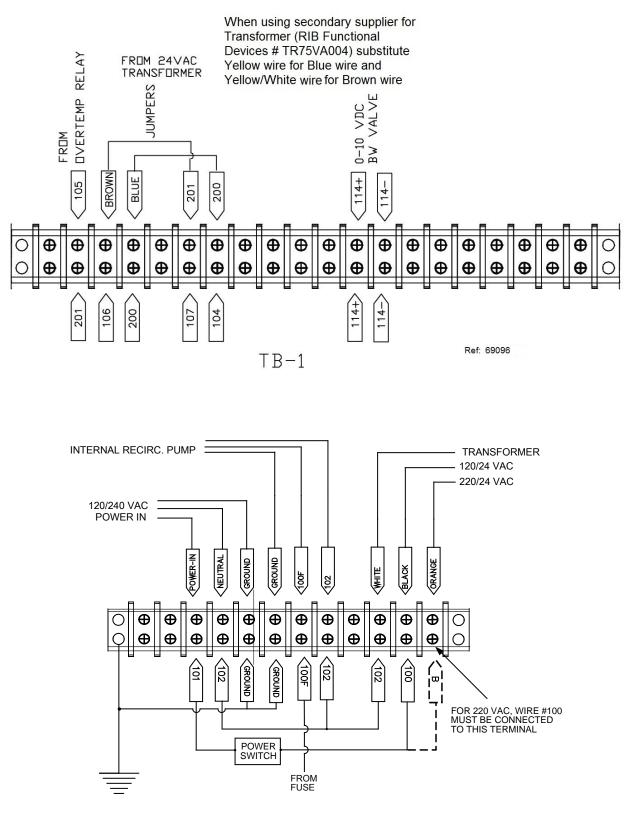
To clear a Hardware Error and reset the Temperature Controller, proceed as follows:

CLEARING HARDWARE ERROR Display Instructions

- 1. Display flashes Hw.Er after adding or removing comm. bd.
- 2. Simultaneously press the Page (🕒) and Scroll (🕑) buttons on the Temperature Controller.
- 3. Using the Up (\blacktriangle) arrow button, change the password to "8".
- 4. Simultaneously press the Page (🕒) and Scroll (🕝) buttons again and observe the Temperature Controller display. The top line will display "8" and the bottom line will display "NO".
- 5. Press the Up (\blacktriangle) arrow button to toggle the display from "NO" to "YES".
- 6. Simultaneously press the **Page** () and **Scroll** () buttons to "Reset" the Temperature Controller and clear the Hardware Error.



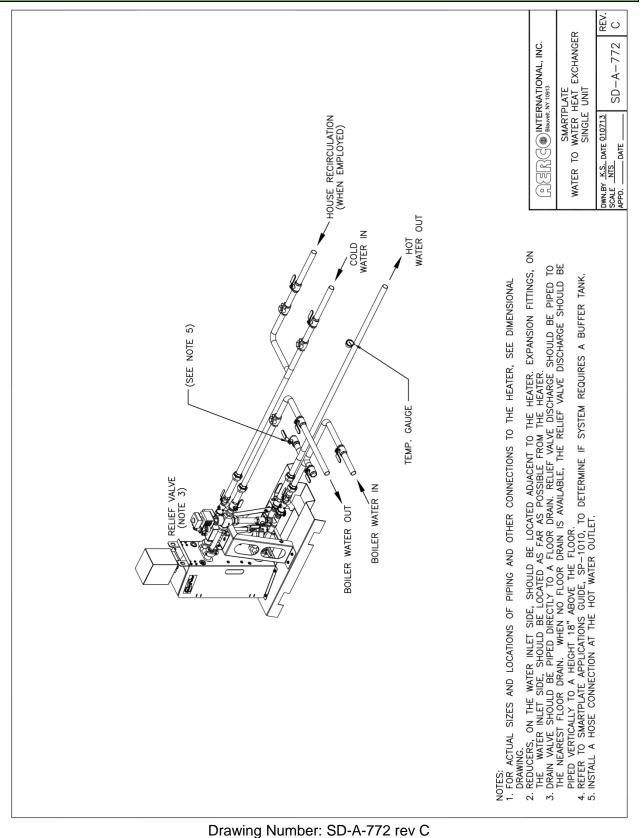
(This page left intentionally blank)


APPENDIX B - ECS/SP WIRING DIAGRAM

APPENDIX B – ECS/SP WIRING DIAGRAM & TERMINAL BLOCK CONNECTIONS

A WATTS Brand

APPENDIX B – ECS/SP WIRING DIAGRAM



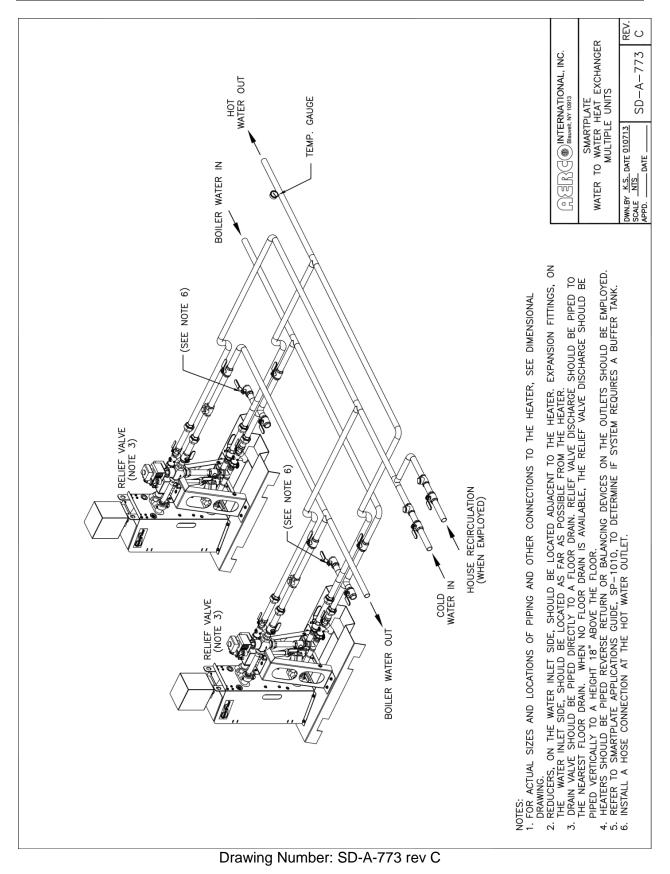
TB-2

APPENDIX C - SMARTPLATE PIPING DRAWINGS

APPENDIX C – SMART PLATE PIPING DRAWINGS

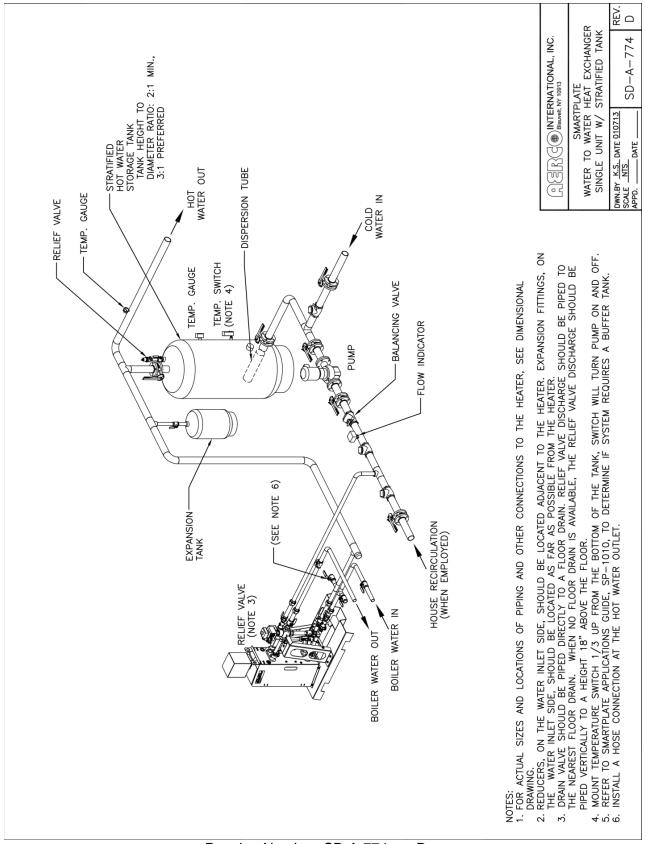
AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913

OMM-0069_0G


SP-100

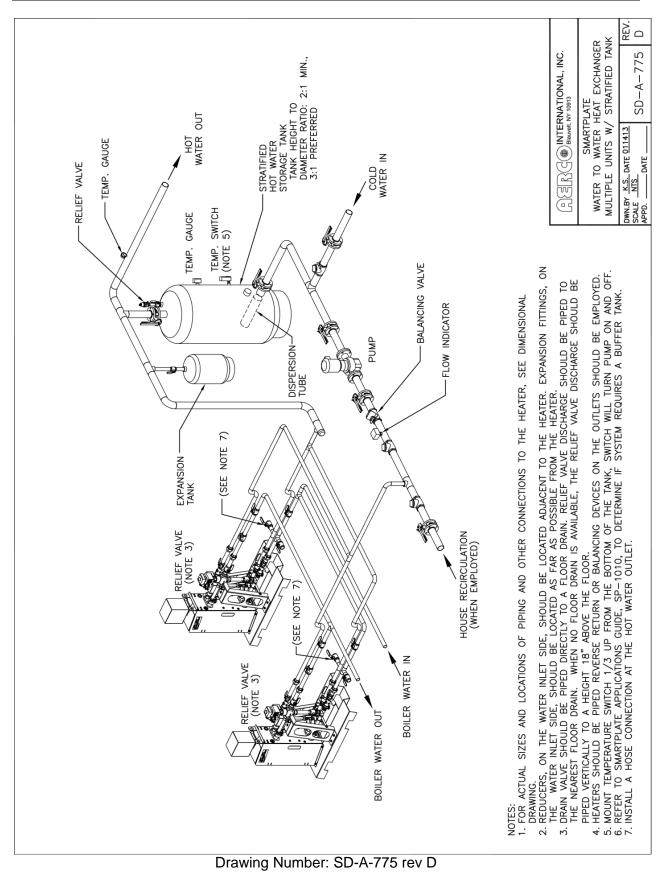
Page 107 of 134 07/14/2017

Phone: 800-526-0288 Cooke Industries - Phone: +64 9 579 2185 Email: sales@cookeindustries.co.nz Web: www.cookeindustries.co.nz


APPENDIX C - SMARTPLATE PIPING DRAWINGS

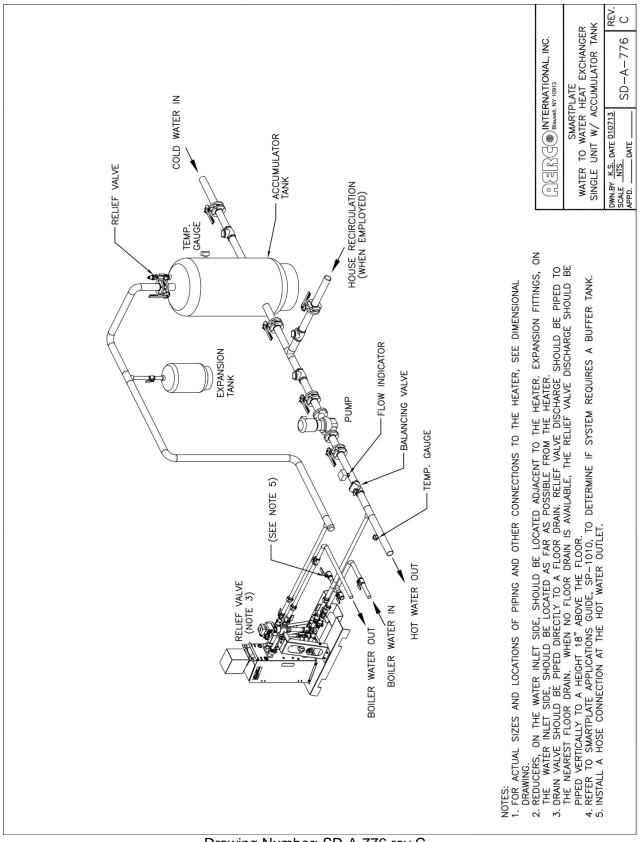
Page 108 of 134AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913OMM-0069_0G07/14/2017Phone: 800-526-0288SP-100Cooke Industries - Phone: +64 9 579 2185Email: sales@cookeindustries.co.nzWeb: www.cookeindustries.co.nz

APPENDIX C – SMARTPLATE PIPING DRAWINGS



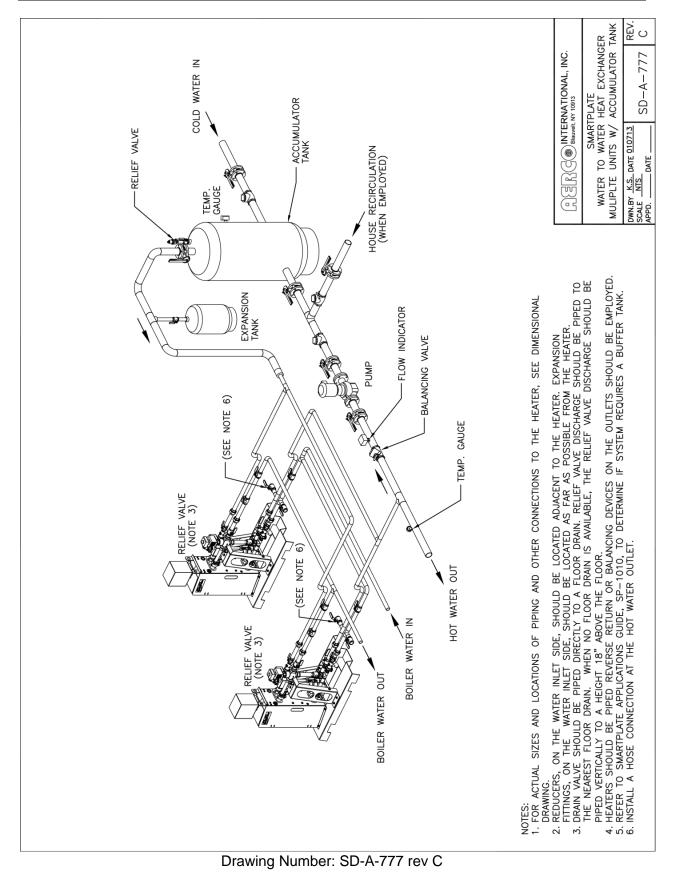
Drawing Number: SD-A-774 rev D

OMM-0069_0GAERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913Page 109 of 134SP-100Phone: 800-526-028807/14/2017Cooke Industries - Phone: +64 9 579 2185Email: sales@cookeindustries.co.nzWeb: www.cookeindustries.co.nz


APPENDIX C – SMARTPLATE PIPING DRAWINGS

Page 110 of 134AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913OMM-0069_0G07/14/2017Phone: 800-526-0288SP-100Cooke Industries - Phone: +64 9 579 2185Email: sales@cookeindustries.co.nzWeb: www.cookeindustries.co.nz

APPENDIX C - SMARTPLATE PIPING DRAWINGS



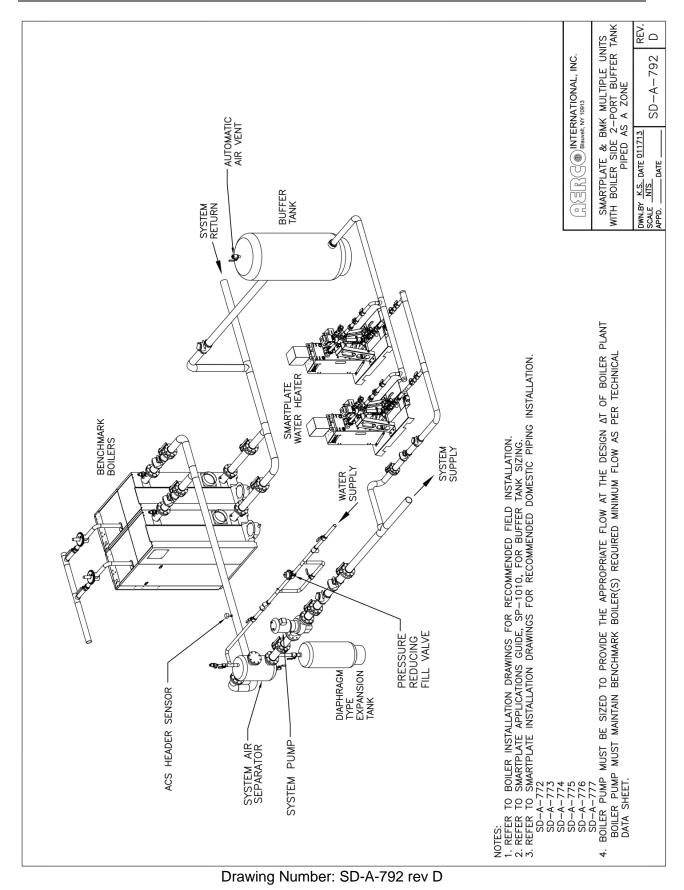
Drawing Number: SD-A-776 rev C

OMM-0069_0G
SP-100AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913Page 111 of 134Or/14/2017Phone: 800-526-028807/14/2017Cooke Industries - Phone: +64 9 579 2185Email: sales@cookeindustries.co.nzWeb: www.cookeindustries.co.nz

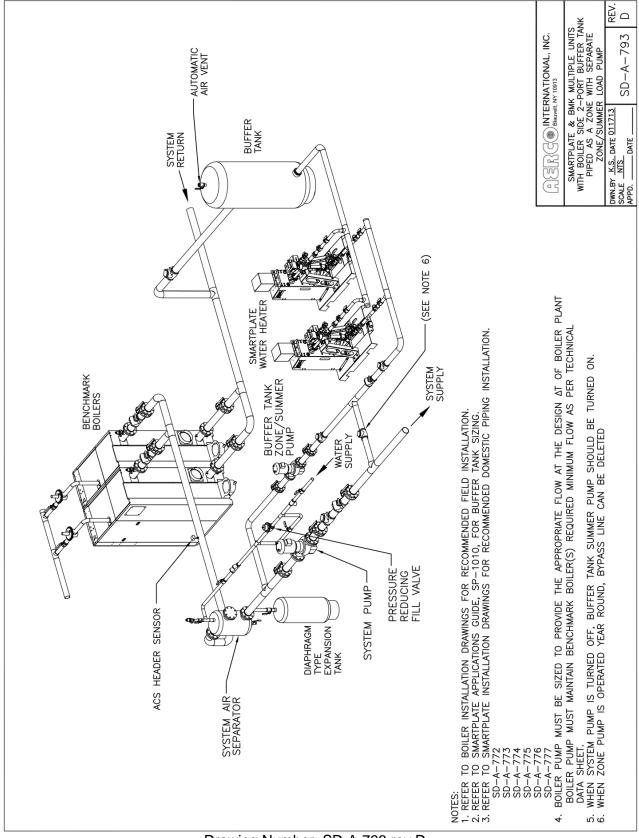

APPENDIX C – SMARTPLATE PIPING DRAWINGS

Page 112 of 134AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913OMM-0069_0G07/14/2017Phone: 800-526-0288SP-100Cooke Industries - Phone: +64 9 579 2185Email: sales@cookeindustries.co.nzWeb: www.cookeindustries.co.nz

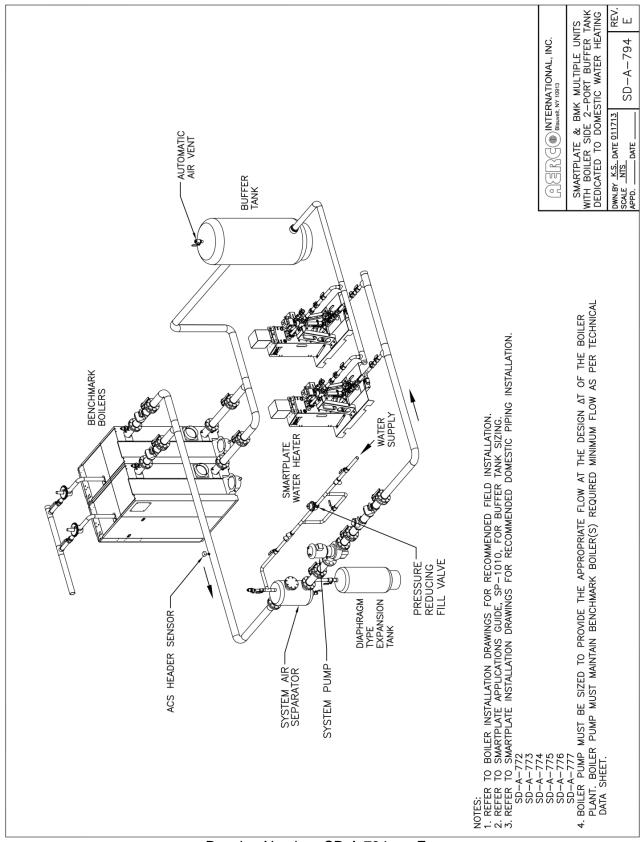
APPENDIX C - SMARTPLATE PIPING DRAWINGS



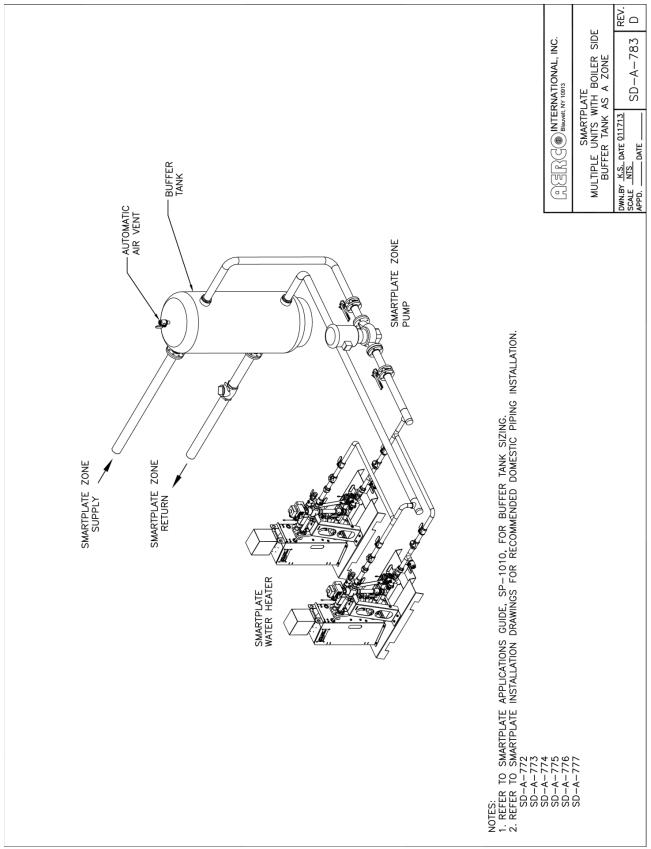
OMM-0069_0G
SP-100AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913Page 113 of 134
07/14/2017Cooke Industries - Phone: +64 9 579 2185Email: sales@cookeindustries.co.nzWeb: www.cookeindustries.co.nz



APPENDIX C – SMARTPLATE PIPING DRAWINGS

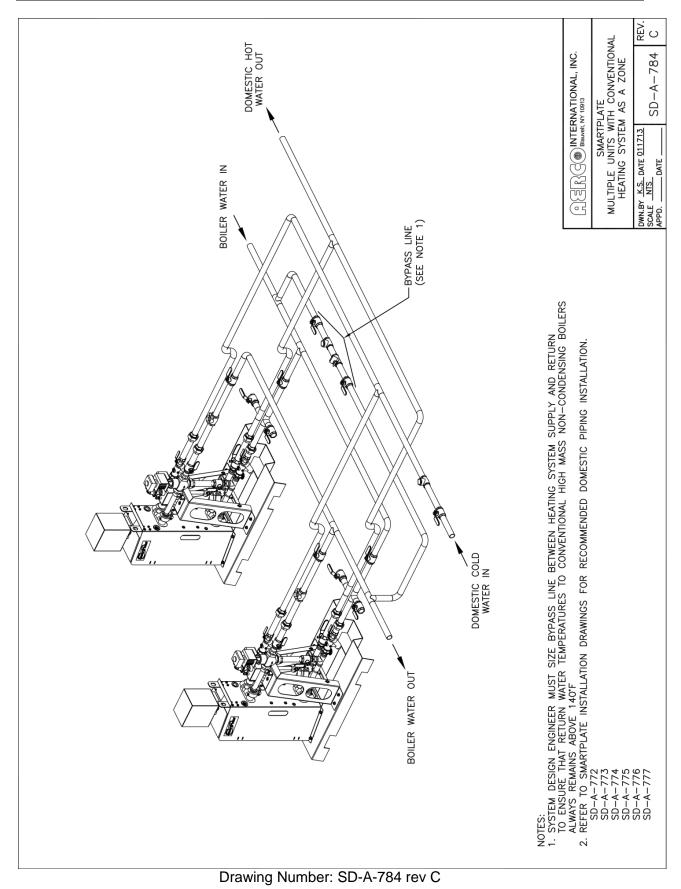

Drawing Number: SD-A-793 rev D

APPENDIX C - SMARTPLATE PIPING DRAWINGS



Drawing Number: SD-A-794 rev E

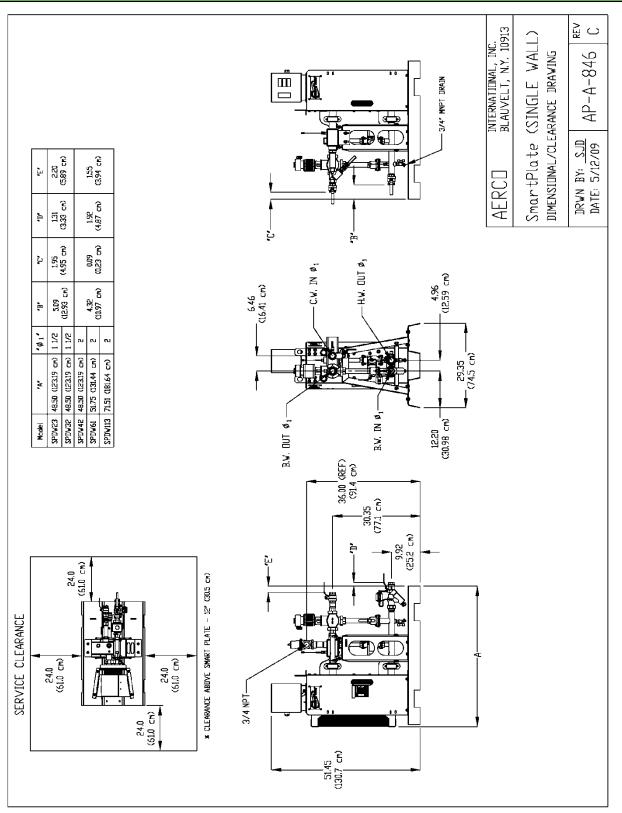
APPENDIX C – SMARTPLATE PIPING DRAWINGS



Drawing Number: SD-A-783 rev D

OMM-0069_0GAERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913Page 117 of 134SP-100Phone: 800-526-028807/14/2017Cooke Industries - Phone: +64 9 579 2185Email: sales@cookeindustries.co.nzWeb: www.cookeindustries.co.nz

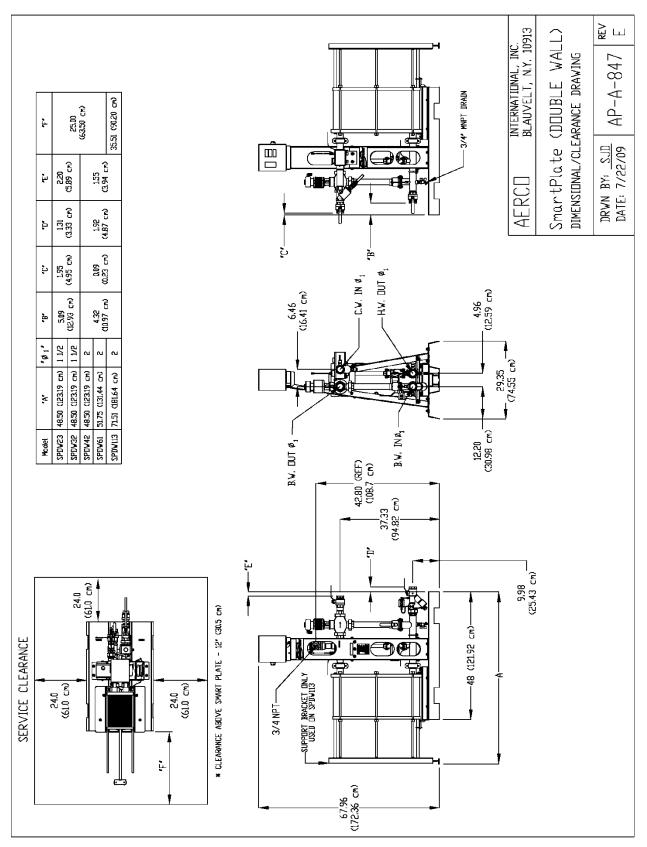
APPENDIX C - SMARTPLATE PIPING DRAWINGS


Page 118 of 134 AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 Phone: 800-526-0288

07/14/2017

APPENDIX D – DIMENSIONAL DRAWINGS

APPENDIX D – DIMENSIONAL DRAWINGS



Drawing Number: AP-A-846 rev C

OMM-0069_0G
SP-100AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913Page 119 of 134
07/14/2017Cooke Industries - Phone: +64 9 579 2185Email: sales@cookeindustries.co.nzWeb: www.cookeindustries.co.nz

APPENDIX D – DIMENSIONAL DRAWINGS

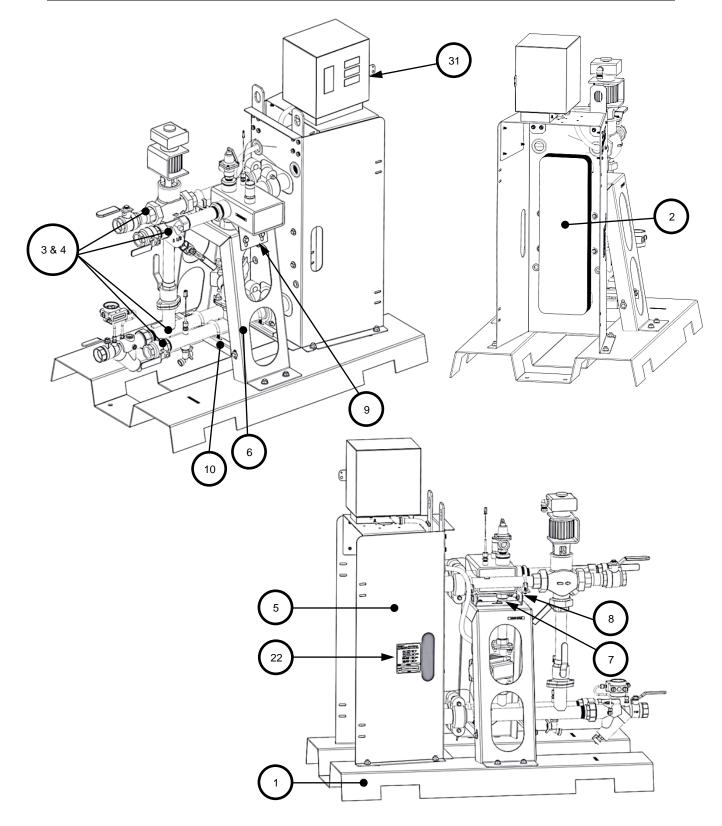
Drawing Number: AP-A-847 rev E

 Page 120 of 134
 AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913
 OMM-0069_0G

 07/14/2017
 Phone: 800-526-0288
 SP-100

 Cooke Industries - Phone: +64 9 579 2185
 Email: sales@cookeindustries.co.nz
 Web: www.cookeindustries.co.nz

APPENDIX E – PART LISTS

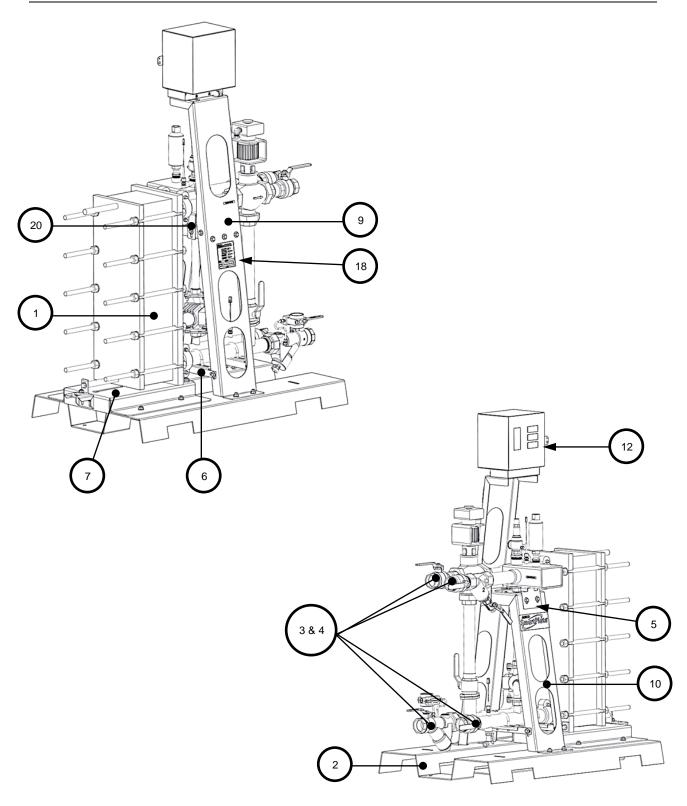

Smart	SmartPlate SINGLE WALL – Base Components								
Item #	Qty	Part #	Description						
1	1	34026	BASE: SMARTPLATE						
2	1	SEE TABLE	BRAZED PLATE HEAT EXCHANGER						
3-A			PIPING ASSY, 1.5" 120V 60 Hz (See assembly drawings below)						
3-B	1	SEE TABLE	PIPING ASSY, 1.5" 220V 50 Hz (See assembly drawings below)						
3-C			PIPING ASSY, 1.5" 220V 60 Hz (See assembly drawings below)						
4-A			PIPING ASSY, 2" 120V/60 Hz (See assembly drawings below)						
4-B	1	SEE TABLE	PIPING ASSY, 2" 220V/50 Hz (See assembly drawings below)						
4-C			PIPING ASSY, 2" 220V/60 Hz (See assembly drawings below)						
5	1	24198	SUPPORT BRACKET ASSEMBLY, BRAZED HEAT EXCHANGER						
6	1	35015	SUPPORT A-FRAME, SMARTPLATE						
7	1	33084-1	BRACKET UPPER PIPES						
8	2	33084-2	ADJUSTER PIPE SUPPORT						
9	1	33083	BRACKET, MIXING BOX						
10	2	33085	BRACKET LOWER PIPES SUPPORT						
20	1	33086	SUPPORT CONTROL BOX						
22	1	73072	PLATE, RATING						
31	1	69096	CONTROL BOX ASSY, SMARTPLATE						

Description		Item 2	Item 3-A	Item 3-B	Item 3-C	Item 4-A	ltem 4-B	Item 4-C
	120V 60 Hz		22263-1					
SP-23	220V 50 Hz	28121-1		22263-3				
	220V 60 Hz				22263-5			
	120V 60 Hz		22263-1					
SP-33	220V 50 Hz	28121-2		22263-3				
	220V 60 Hz				22263-5			
	120V 60 Hz	28121-3				22264-1		
SP-45	220V 50 Hz						22264-3	
	220V 60 Hz							22264-5
	120V 60 Hz					22264-1		
SP-69	220V 50 Hz	28121-4					22264-3	
	220V 60 Hz							22264-5
	120V 60 Hz					22264-1		
SP-150	220V 50 Hz	28121-5					22264-3	
	220V 60 Hz							22264-5

AERCO International, Inc.	SmartPlate Single Wall Part List	02/27/2017
Blauvelt, NY 10913	29381-TAB rev F	Sheet 1 of 2
OMM-0069_0G SP-100	AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 Phone: 800-526-0288	Page 121 of 134 07/14/2017

APPENDIX E – PART LISTS

AERCO International, Inc.	SmartPlate Single Wall Part List	02/27/2017
Blauvelt, NY 10913	29381-TAB rev F	Sheet 2 of 2
Page 122 of 134 07/14/2017	AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 Phone: 800-526-0288	OMM-0069_0G SP-100


APPENDIX E – PART LISTS

Smart	SmartPlate DOUBLE-WALL – Base Components						
Item #	Qty	Part #	Description				
1	1	SEE TABLE	DOUBLE WALL HEAT EXCHANGER				
2	1	34026	BASE, SMARTPLATE				
3-A	1	SEE TABLE	PIPING ASSY, 1.5" SPDW – 120V/60 Hz				
3-B	Ţ	SEE TADLE	PIPING ASSY, 1.5" SPDW – 220V/50 Hz				
4-A	1	SEE TABLE	PIPING ASSY, 2" SPDW – 120V/60 Hz				
4-B	Ţ	SEE TADLE	PIPING ASSY, 2" SPDW – 220V/50 Hz				
5	1	33102	BRACKET, MIXING BOX DW				
6	2	33105	BRACKET LOWER PIPES SUPPORT				
7	1	33091	HX MOUNT, SMARTPLATE DW				
8	1	SEE TABLE	DW HX END SUPPORT BRACKET (Not Shown Below)				
9	1	33098	PIPING FRAME, LEFT, SMARTPLATE DW				
10	1	33099	PIPING FRAME, RIGHT, SMARTPLATE DW				
12	1	69096	CONTROL BOX ASSY, SMARTPLATE				
18	1	73072	PLATE, RATING				
20	1	33106	BRACKET, ADJUSTER PIPING SUPPORT				

Pressure	Description		ltem 1	Item 3-A	Item 3-B	Item 4-A	Item 4-B	Item 8
	SPDW-23	120V 60 Hz	20104 1	22263-2				
	SPDW-23	220V 50 Hz	28104-1		22263-4			
	SPDW-32	120V 60 Hz	20104.2	22263-2				
	3PDW-32	220V 50 Hz	28104-2		22263-4			
150 PSI	SPDW-42	120V 60 Hz	20104.2			22264-2		
Pressure	SPDW-42	220V 50 Hz	28104-3				22264-4	
		120V 60 Hz	20104 4			22264-2		
	SPDW-61	220V 50 Hz	28104-4				22264-4	
	SPDW-113	120V 60 Hz	28104-5			22264-2		33095
		220V 50 Hz					22264-4	33095
	SPDW-23	120V 60 Hz	28104-6	22263-2				
		220V 50 Hz			22263-4			
	SPDW-32	120V 60 Hz	28104-7	22263-2				
	3FDW-32	220V 50 Hz			22263-4			
200 PSI	SPDW-42	120V 60 Hz	28104-8			22264-2		
Pressure	51 0 10 42	220V 50 Hz	20104 0				22264-4	
	SPDW-61	120V 60 Hz	28104-9			22264-2		
	35000-01	220V 50 Hz	20104-9				22264-4	
	SPDW-113	120V 60 Hz	28104-10			22264-2		33095
	21 D VV-112	220V 50 Hz	20104-10				22264-4	33095

AERCO International, Inc.	SmartPlate Double Wall Part List	02/22/2017
Blauvelt, NY 10913	29382-TAB rev E	Sheet 1 of 2
OMM-0069_0G SP-100	AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 Phone: 800-526-0288	Page 123 of 134 07/14/2017

AERCO International, Inc.	SmartPlate Double Wall Part List	02/22/2017
Blauvelt, NY 10913	29382-TAB rev E	Sheet 2 of 2
Page 124 of 134 07/14/2017	AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 Phone: 800-526-0288	OMM-0069_0G SP-100

SmartPlate Installation Kits

SmartPlate Water Heater units are shipped with one of the following installation kits:

Kit #	SmartPlate Models	НХ Туре	Pressure	NYC Option
	SP23, SP33, SP45, SP69, SP150	Single Wall		
58128-1	SPDW23, SPDW32, SPDW42, SPDW61, SPDW113	Double Wall	150 PSI	No
	SP23, SP33, SP45, SP69, SP150	Single Wall		No
58128-2	SPDW23, SPDW32, SPDW42, SPDW61, SPDW113	Double Wall	200 PSI	
58128-3	SP23, SP33, SPDW23, SPDW32	Double Wall		
58128-4	SP45, SP69, SP150, SPDW42, SPDW61, SPDW113	Double Wall	150 PSI	Yes
58128-5	SP23, SP33, SPDW23, SPDW32	Double Wall		Tes
58128-6	SP45, SP69, SP150, SPDW42, SPDW61, SPDW113	Double Wall	200 PSI	

The contents of each kit are shown in the table below.

		Quantity Per Kit					
		1	150 PSI Kits 200 PSI Kits			s	
Part #	Description	58128-1	58128-3	58128-4	58128-2	58128-5	58128-6
92070	Air Vent Valve ¾", 150 PSI	1	1	1			
92130	Air Vent Valve ¾", 200 PSI				1	1	1
92065-1	Relief Valve, ¾M X ¾F, 150 PSI	1	1	1			
92134-1	Relief Valve, 200 PSI				1	1	1
92111	Relief Valve (NYC Only)		1	1		1	1
93521	Reducing Bushing, 1 ¹ / ₂ " to ³ / ₄ "	1	1	1	1	1	1
93505	Reducing Bushing 1" to 3/4"			1	1	1	2
93451	Nipple, ¾", 2" Lg., 200 PSI				1	1	1
		6	<u>,</u>			(C	0

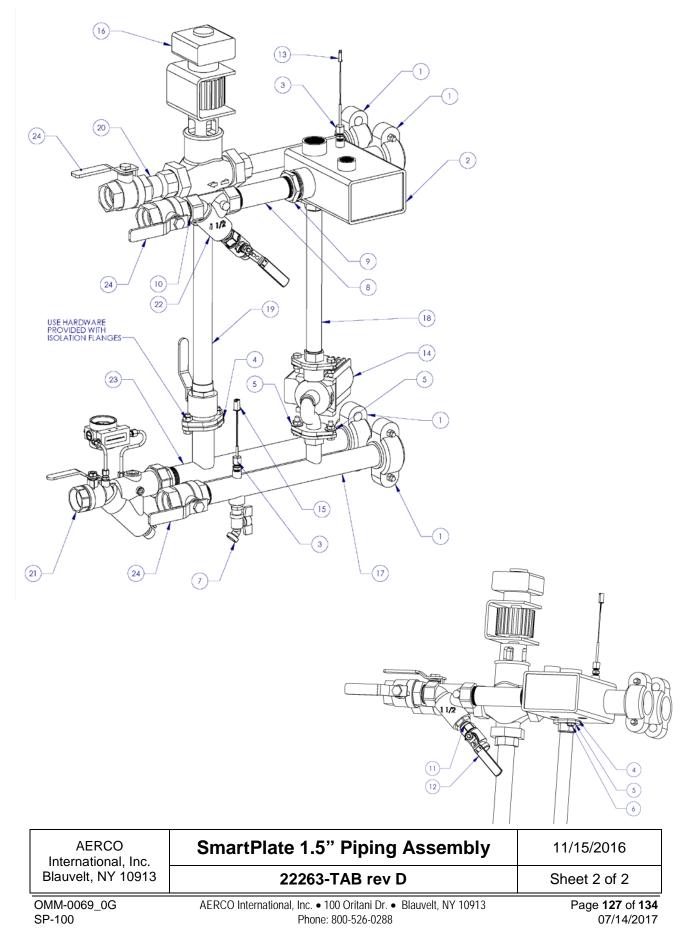
Air Vent Valve P/N 92070 Relief Valve P/N 92111	Reducing Bushing, 1½" to ¾" P/N 93521 Reducing Bushing, 1" to ¾" P/N 93505	Nipple, ¾", 2" I P/N 93451	Relief Valve, P/N 92134-1	Relief Valve, P/N 920		Air Vent Valve P/N 92130
AERCO International, Ir	Sn	nartPlate A	ccessory I	Kits	11/18	5/2016
Blauvelt, NY 109	913	58128-T	AB rev D		Shee	t 1 of 1
OMM-0069_0G SP-100	AERCO Int	ternational, Inc. • 100 Phone: 80	Oritani Dr. ● Blauve 0-526-0288	lt, NY 10913	Pa	age 125 of 134 07/14/2017

P/N 22263-TAB – SmartPlate 1.5 " Piping Assemblies

1.5 inch piping assemblies are used in the following SmartPlate models:

Piping Assembly P/N	SmartPlate Models	Pressure *	Туре	Power	
22262 1	SP23, SP33	150 PSI	Single Wall		
22263-1	5825, 5855	200 PSI	Single Wall	120V 60 Hz	
22262.2	SPDW23, SPDW32	150 PSI	Double Wall		
22263-2	SPDW23, SPDW32	200 PSI	Double Wall		
22262.2		150 PSI	Cingle Wall	2201/ 50 11-	
22263-3	SP23, SP33	200 PSI	Single Wall		
22262.4		150 PSI		220V 50 Hz	
22263-4	SPDW23, SPDW32	200 PSI	Double Wall		

* Appropriate add-on kit differentiates overall product for given DHW side operating pressure


The table below lists the parts and quantities in each piping assembly:

ITEM NO.	PART NUMBER	DESCRIPTION	22263-1 QTY	22263-2 QTY	22263-3 QTY	22263-4 QTY	22263-5 QTY
1	93159	COUPLING, QUIK FLEX 2"	4	4	4	4	4
2	41023	MANIFOLD, INTAKE	1	1	1	1	1
3	93029	1/4" MNPT x 3/16" OD COMPRESSION FITTING	2	2	2	2	2
4	81117	RING GASKET, 1" PIPE	2	2	2	2	2
5	123614	WASHER, FLAT 3/8	6	6	6	6	6
6	6-311	BOLT, HEX 3/8-16 X 1.00 LG	2	2	2	2	2
7	92060	VALVE, 3/4" DRAIN MNPT X GHT	1	1	1	1	1
8	90058	1-1/2" NPT NIPPLE X 7" LG	1	1	1	1	1
9	12610-9-8	BUSHING, HEX RED. 2" X 1 1/2"	1	1	1	1	1
10	93413	CLOSE NIPPLE, SS SCH 40, 1.5" NPT	1	1	1	1	1
11	9-234	CLOSE NIPPLE, 3/4" NPT SCH. 40 RED BRASS	1	1	1	1	1
12	92128	FULL BALL PORT VALVE, 3/4" NPT x 3/4" HOSE	1	1	1	1	1
13	61009-1	THERMOCOUPLE, SINGLE ELEMENT	1	1	1	1	1
14	69259-1	CARTRIDGE CIRCULATOR, 110V 60Hz, 200 PSI	1	1	10	32	25
14	69259-2	CARTRIDGE CIRCULATOR, 220V 50Hz, 200 PSI	-	-	Ĩ	1	-
14	69259-3	CARTRIDGE CIRCULATOR, 220V 60Hz, 200 PSI	~		-	-	1
15	61008-1	THERMOCOUPLE, DUAL ELEMENT	1	1	1	1	1
16	22101-2	1.5" 3-WAY VALVE ASSY W/ LEFT LEG	1	1	1	1	1
17	22251-2	MANIFOLD, DHW 1.5" NPT	1	1	1	1	1
18	22255-1	SPOOL PIECE, 1" PIPE X FREEDOM FLGS. 8.40 LG	1	-	1	12	1
18	22255-2	SPOOL PIECE, 1" PIPE X FREEDOM FLGS, 15.28 LG	-	1	-	1	
19	22260-4	SPOOL PIECE w/VALVE, 1.5" TUBE , 12.5"LG	1	12	1	12	1
19	22260-2	SPOOL PIECE w/VALVE, 1.5" TUBE, 19.45" LG	-	1	-	1	-
20	90047-3	PIPE NIPPLE, SS SCH. 40, TBE, 1.5" X 3" LG.	1	1	1	1	1
21	22272-1.5	BALL VALVE & STRAINER COMBO w/	1	1	1	1	1
22	93514-1.5	STRAINER 1.5"NPT, WYE-PATTERN, LEAD FREE BRONZE	1	1	1	1	1
23	22262	MANIFOLD, 1.5" NPT BOILER SIDE	1	1	1	1	1
24	92106	BALL VALVE, 1.5" NPT LEAD FREE	3	3	3	3	3

AERCO International, Inc.	SmartPlate 1.5" Piping Assembly	11/15/2016	
Blauvelt, NY 10913	22263-TAB rev D	Sheet 1 of 2	
Page 126 of 134 07/14/2017	AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 Phone: 800-526-0288	OMM-0069_0G SP-100	

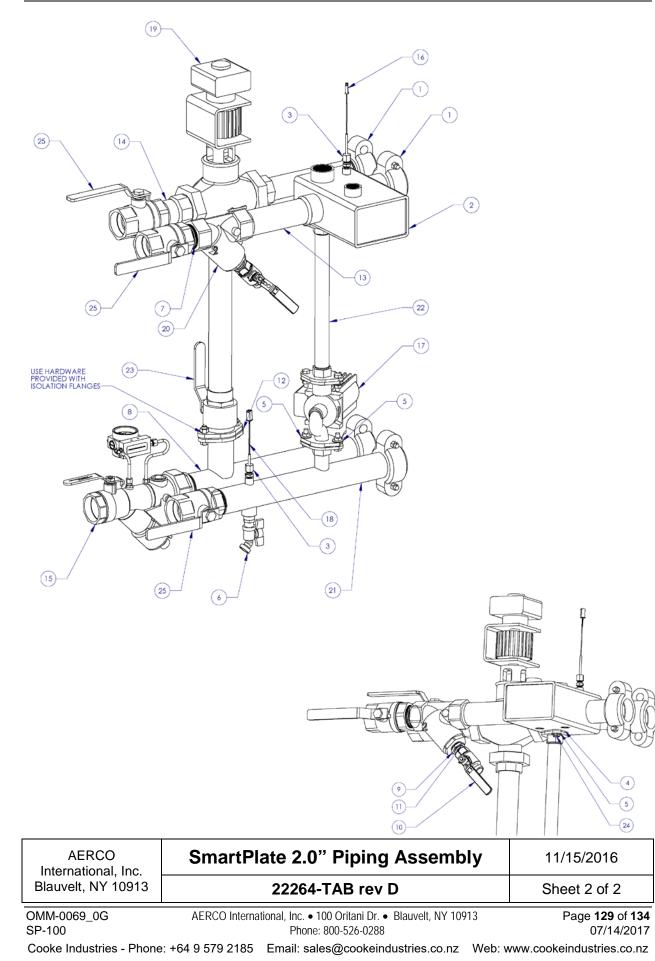
Phone: 800-526-0288

APPENDIX E – PART LISTS

P/N 22264-TAB – SmartPlate 2.0 " Piping Assemblies

2.0 inch piping assemblies are used in the following SmartPlate models:

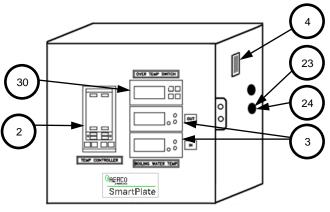
Piping Assy. P/N	SmartPlate Models	Pressure *	Туре	Power	
22264-1		150 PSI	Single Wall		
22204-1	SP45, SP69, SP150	200 PSI		120V 60 Hz	
22264-2	SPDW42, SPDW61, SPDW113	150 PSI	Double Wall		
22204-2	SPDW42, SPDW01, SPDW115	200 PSI	Double wall		
22264-3	SP45, SP69, SP150	150 PSI	Single Wall	220V 50 Hz	
22204-3		200 PSI			
22264-4	SPDW42, SPDW61, SPDW113	150 PSI	Double Wall		
22204-4		200 PSI	Double wall		
22264-5	SPDW42, SPDW61, SPDW113	200 PSI	Double Wall	220V 60 Hz	

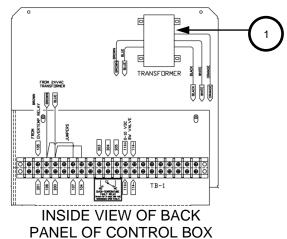

* Appropriate add-on kit differentiates overall product for given DHW side operating pressure The table below lists the parts and quantities in each piping assembly:

ITEM NO.	PART NUMBER	DESCRIPTION	22264-1 QTY	22264-2 QTY	22264-3 QTY	22264-4 QTY	22264-5 QTY
1	93159	COUPLING, QUIK FLEX 2"	4	4	4	4	4
2	41023	MANIFOLD, INTAKE	1	1	1	1	1
3	93029	1/4" MNPT x 3/16" OD COMPRESSION FITTING	2	2	2	2	2
4	81117	RING GASKET, 1" PIPE	1	1	1	1	1
5	123614	WASHER, FLAT 3/8	6	6	6	6	6
6	92060	VALVE, 3/4" DRAIN MNPT X GHT	1	1	1	1	1
7	90106	CLOSE NIPPLE, 2" NPT SS, SCH 40	1	1	1	1	1
8	22261	MANIFOLD, 2" NPT BOILER SIDE	1	1	1	1	1
9	93505	HEX REDUCING BUSHING, 1" MNPT x 3/4" FNPT	1	1	1	1	1
10	92128	FULL BALL PORT VALVE, 3/4" NPT x 3/4" HOSE	1	1	1	1	1
11	9-234	CLOSE NIPPLE, 3/4" NPT SCH. 40 RED BRASS	1	1	1	1	1
12	81202	GASKET, 2" ISOLATION VALVE	1	1	1	1	1
13	90046-8	NIPPLE, 2" NPT 304 SS SCH 40, 8" LG	1	1	1	1	1
14	90046-3	NIPPLE, 2" NPT 304 SS SCH 40, 3" LG	1	1	1	1	1
15	22272-2	BALL VALVE & STRAINER COMBO, 2" NPT w/ DP GAGE	1	1	1	1	1
16	61009-1	THERMOCOUPLE, SINGLE ELEMENT	1	1	1	1	1
17	69259-1	CARTRIDGE CIRCULATOR, 110V 60Hz, 200 PSI	1	1	-	-	-
17	69259-2	CARTRIDGE CIRCULATOR, 220V 50Hz, 200 PSI	-	-	1	1	-
17	69259-3	CARTRIDGE CIRCULATOR, 220V 60Hz, 200 PSI	-	-	-	-	1
18	61008-1	THERMOCOUPLE, DUAL ELEMENT	1	1	1	1	1
19	22101-1	2" 3-WAY VALVE ASSY W/ LEFT LEG	1	1	1	1	1
20	93514-2	STRAINER 2"NPT, WYE-PATTERN, LEAD FREE BRONZE	1	1	1	1	1
21	22251-1	MANIFOLD, DHW 2" NPT	1	1	1	1	1

AERCO International, Inc.	SmartPlate 2.0" Piping Assembly	11/15/2016
Blauvelt, NY 10913	22264-TAB rev D	Sheet 1 of 2
Page 128 of 134 07/14/2017	AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 Phone: 800-526-0288	OMM-0069_0G SP-100

APPENDIX E – PART LISTS




CONTROL BOX ASSEMBLY – SINGLE WALL & DOUBLE WALL				
Item #	Qty	Part #	Description	
1	1	65082	TRANSFORMER, X075CBA, 120/240 TO 24 VAC	
		64028-7	TEMPERATURE INDICATOR CONTROLLER - SP23, SPDW23	
		64028-8	TEMPERATURE INDICATOR CONTROLLER: SP33, SPDW32	
2	1	64028-9	TEMPERATURE INDICATOR CONTROLLER: SP45, SPDW42	
		64028-10	TEMPERATURE INDICATOR CONTROLLER: SP69, SPDW61	
		64028-11	TEMPERATURE INDICATOR CONTROLLER: SP150, SPDW113	
3	2	64056	BOILER WATER TEMPERATURE INDICATOR	
4	1	60003	ON/OFF SWITCH	
* 15	1	63009-3	EXTERNAL HARNESS (COMPLETE HARNESS)	
THE FOLL	THE FOLLOWING PART NUMBERS ARE SUB-COMPONENTS OF 63009-3:			
*	1	63009-52	HOT WATER OUT-TO-TEMP CTRL. WIRING HARNESS	
*	1	63009-53	HOT WATER OUT-TO-OVER TEMP SW. WIRING HARNESS	
*	1	63009-55	BOILER WATER IN WIRING HARNESS	
*	1	63009-57	BOILER WATER OUT WIRING HARNESS	
*	1	63009-58	MIXED INLET TEMP WIRING HARNESS	
*	1	63009-61	RECIRCULATION PUMP WIRING HARNESS	
*	1	63009-64	CONTROL VALVE WIRING HARNESS	
THE FOLL	OWING	PART NUMBER	S ARE SUB-COMPONENTS OF 63009-64:	
*		63009-62	ACTUATOR SIGNAL WIRING HARNESS	
*		63009-63	ACTUATOR POWER WIRING HARNESS	
23	1	65094-1	FUSE	
24	1	65095	FUSE HOLDER	
30	1	60014	OVER TEMPERATURE SWITCH	
* NOT SHO	NOT SHOWN IN DRAWING			

Model	Programmed Control Box	
SP23	28047-8	
SP33	28047-9	
SP45	28047-10	
SP69	28047-11	
SP150	28047-12	

Model	Programmed Control Box
SPDW23	28047-21
SPDW32	28047-21
SPDW42	28047-22
SPDW61	28047-23
SPDW113	28047-24

CONTROL BOX

SmartPlate Control Box Part List AERCO 09/24/2015 International, Inc. Blauvelt, NY 10913 69096 rev J Sheet 1 of 1 Page 130 of 134 AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 OMM-0069_0G 07/14/2017

Phone: 800-526-0288

SP-100

APPENDIX F – RECOMMENDED SPARE PARTS

APPENDIX F – RECOMMENDED SPARE PARTS

NOTE

Refer to the SmartPlate Parts List illustrations in Appendix E for the locations of the recommended and optional spare parts listed in the following Tables.

TABLE F-1. Recommended Emergency Spare Parts				
DESCRIPTION	PART NUMBER			
Heat Exchanger (Single-Wall)	See Appendix E, Part Lists Item 2, Sheet 1,			
Valve Electronic Module	65092			
Temperature Controller	See Control Box, previous page			
Circulator Pump (120 VAC, 60 Hz)	69259-1			
Circulator Pump (220 VAC, 50 Hz)	69259-2			
Circulator Pump (220 VAC, 60 Hz)	69259-3			
Domestic Water Inlet Thermocouple	99042-1			
Domestic Water Outlet Thermocouple	99042-2			

TABLE F-2. Spare Parts Recommended for Maintenance				
DESCRIPTION	PART NUMBER			
Boiler Water Differential Pressure Gauge with Compression Fittings	67002			
Strainer Screen	99085			
SPDW Thermal Plate with Gasket, Double-Wall Heat Exchanger	Call AERCO representative			
SPDW Gasket Double-Wall Thermal Plate	81128			
SPDW 4-Hole Endplate with Gasket	42204			
SPDW No Hole Endplate with Gasket	42205			

TABLE F-3. Spare Parts Recommended for Pump Maintenance		
DESCRIPTION	PART NUMBER	
Pump Flange Gasket Set	89011-1	
Pump Casing O-Ring	89011-2	
Pump Capacitor (120 VAC)	89011-3	
Pump Capacitor (220 VAC)	89011-4	
Pump Cartridge Assembly	89011-5	
Pump Fuse	69098-3	

TABLE F-4. Optional Spare Parts		
DESCRIPTION	PART NUMBER	
Over-Temperature Switch BW Temp Indicator	64056	
Boiler Water Sensor	61018	

TABLE F-5. Spare Parts Recommended for Control Valve		
DESCRIPTION	PART NUMBER	
Gasket, 1-1/2"	81181	
Gasket, 2"	81182	

NOTES:

Change Log			
Date	Description	Changed By	
10/15/2015	 Rev F Changes: 825: Make units lead free 1062: Changed and/or added to numerous figures, split Parts Lists into separate Appendix E. 1090: Changed piping assemblies, added 200 PSI option. Updated kit contents, sections 2.6 and Appendix E, changed code plate from P/N 73020 to P/N 73072. 1147: Replace Air Vent Valve 92070 with P/N 92116. 	Chris Blair	
07/14/2017	 Rev G Changes: 1320: Added 220 V 60 Hz option, plus various updates (reference DIR 393) DIR 17-001: Added recommendation in Section 2.4 to use 2 pipe wrenches when tightening pipe connections 	Chris Blair	

